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PREFACE 
 
 
This book aims to give a complete and self-contained presentation of semi-
Markov models with finitely many states, in view of solving real life problems of 
risk management in three main fields: Finance, Insurance and Reliability 
providing a useful complement to our first book (Janssen and Manca (2006)) 
which gives a theoretical presentation of semi-Markov theory. However, to help 
assure the book is self-contained, the first three chapters provide a summary of 
the basic tools on semi-Markov theory that the reader will need to understand our 
presentation. For more details, we refer the reader to our first book (Janssen and 
Manca (2006)) whose notations, definitions and results have been used in these 
four first chapters. 
Nowadays, the potential for theoretical models to be used on real-life problems is 
severely limited if there are no good computer programs to process the relevant 
data. We therefore systematically propose the basic algorithms so that effective 
numerical results can be obtained. Another important feature of this book is its 
presentation of both homogeneous and non-homogeneous models. It is well 
known that the fundamental structure of many real-life problems is non-
homogeneous in time, and the application of homogeneous models to such 
problems gives, in the best case, only approximated results or, in the worst case, 
nonsense results. 
This book addresses a very large public as it includes undergraduate and graduate 
students in mathematics and applied mathematics, in economics and business 
studies, actuaries, financial intermediaries, engineers and operation researchers, 
but also researchers in universities and rd departments of banking, insurance and 
industry.  
Readers who have mastered the material in this book will see how the classical 
models in our three fields of application can be extended in a semi-Markov 
environment to provide better new models, more general and able to solve 
problems in a more adapted way. They will indeed have a new approach giving a 
more competitive knowledge related to the complexity of real-life problems. 
Let us now give some comments on the contents of the book. 
As we start from the fact that the semi-Markov processes are the children of a 
successful marriage between renewal theory and Markov chains, these two topics 
are presented in Chapter 2.  
The full presentation of Markov renewal theory, Markov random walks and 
semi-Markov processes, functionals of (J-X) processes and semi-Markov random 
walks is given in Chapter 3 along with a short presentation of non-homogeneous 
Markov and semi-Markov processes.  
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Chapter 4 is devoted to the presentation of discrete time semi-Markov processes, 
reward processes both in undiscounted and discounted cases, and to their 
numerical treatment.  
Chapter 5 develops the Cox-Ross-Rubinstein or binomial model and semi-
Markov extension of the Black and Scholes formula for the fundamental problem 
of option pricing in finance, including Greek parameters. In this chapter, we must 
also mention the presence of an option pricing model with arbitrage possibility, 
thus showing how to deal with a problem stock brokers are confronted with daily. 
Chapter 6 presents other general finance and insurance semi-Markov models with 
the concepts of exchange and dated sums in stochastic homogeneous and non-
homogeneous environments, applications in social security and multiple life 
insurance models. 
Chapter 7 is entirely devoted to insurance risk models, one of the major fields of 
actuarial science; here, too, semi-Markov processes and diffusion processes lead 
to completely new risk models with great expectations for future applications, 
particularly in ruin theory. 
Chapter 8 presents classical and semi-Markov models for reliability and credit 
risk, including the construction of rating, a fundamental tool for financial 
intermediaries. 
Finally, Chapter 9 concerns the important present day problem of pension 
evolution, which is clearly a time non-homogeneous problem. As we need here 
more than one time variable, we introduce the concept of generalised non-
homogeneous semi-Markov processes. A last section develops generalised non 
homogeneous semi-Markov models for salary line evolution. 
Let us point out that whenever we present a semi-Markov model for solving an 
applied problem, we always summarise, before giving our approach, the classical 
existing models. Therefore the reader does not have to look elsewhere for 
supplementary information; furthermore, both approaches can be compared and 
conclusions reached as to the efficacy of the semi-Markov approach developed in 
this book. 
It is clear that this book can be read by sections in a variety of sequences, 
depending on the main interest of the reader. For example, if the reader is 
interested in the new approaches for finance models, he can read the first four 
chapters and then immediately Chapters 5 and 6, and similarly for other topics in 
insurance or reliability. 
The authors have presented many parts of this book in courses at several 
universities: Université Libre de Bruxelles, Vrije Universiteit Brussel, Université 
de Bretagne Occidentale (EURIA), Universités de Paris 1 (La Sorbonne) and 
Paris VI (ISUP), ENST-Bretagne, Université de Strasbourg, Universities of 
Roma (La Sapienza), Firenze and Pescara. 
Our common experience in the field of solving some real problems in finance, 
insurance and reliability has joined to create this book, taking into account the 
remarks of colleagues and students in our various lectures. We hope to convince 
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potential readers to use some of the proposed models to improve the way of 
modelling real-life applications.  
 
Jacques Janssen     Raimondo Manca 
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Chapter 1 
 
PROBABILITY TOOLS FOR STOCHASTIC 
MODELLING 
 
In this chapter, the reader will find a short summary of the basic probability tools 
useful for understanding of the following chapters. A more detailed version 
including proofs can be found in Janssen and Manca (2006). We will focus our 
attention on stochastic processes in discrete time and continuous time defined by 
sequences of random variables. 
 
1 THE SAMPLE SPACE 
 
The basic concrete notion in probability theory is that of the random experiment, 
that is to say an experiment for which we cannot predict in advance the outcome. 
With each random experiment, we can associate the so-called elementary events 
ω , and the set of all these events Ω  is called the sample space. Some other 
subsets of Ω  will represent possible events. Let us consider the following 
examples. 
 
Example 1.1 If the experiment consists in the measurement of the lifetime of an 
integrated circuit, then the sample space is the set of all non-negative real 
numbers + . Possible events are [ ] ( ) [ ) ( ], , , , , , ,a b a b a b a b  where for example the 
event [ ),a b  means that the lifetime is at least a and strictly inferior to b. 
 
Example 1.2 An insurance company is interested in the number of claims per 
year for its portfolio. In this case, the sample space is the set of natural numbers 

.  
 
Example 1.3 A bank is to invest in some shares; so the bank looks to the history 
of the value of different shares. In this case, the sample space is the set of all non-
negative real numbers + . 
 
To be useful, the set of all possible events must have some properties of stability 
so that we can generate new events such as: 
(i)    the complement cA : { }:cA Aω ω= ∈Ω ∉ , (1.1) 
(ii)   the union A B∪  : { }:  or  A B A Bω ω ω= ∈ ∈∪ , (1.2) 
(iii)  the intersection A B∩ : { }: ,A B A Bω ω ω= ∈ ∈∩ . (1.3) 
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More generally, if ( , 1)nA n ≥  represents a sequence of events, we can also 
consider the following events: 
 

1 1

,n n
n n

A A
≥ ≥
∪ ∩  (1.4) 

representing respectively the union and the intersection of all the events of the 
given sequence. The first of these two events occurs iff at least one of these 
events occurs and the second iff all the events of the given sequence occur. The 
set Ω  is called the certain event and the set ∅  the empty event. Two events A 
and B are said to be disjoint or mutually exclusive iff  
 A B =∅∩ . (1.5) 
Event A implies event B iff 
 A B⊂ . (1.6) 
 
In Example 1.3, the event “the value of the share is between “50$ and 75$” is 
given by the set [ ]50,75 . 
 
2 PROBABILITY SPACE  
 
Given a sample space Ω , the set of all possible events will be noted by ℑ , 
supposed to have the structure of a σ -field or a σ -algebra. 
 
Definition 2.1 The family ℑ  of subsets of Ω  is called a σ -field or a σ -
algebra iff the following conditions are satisfied: 
(i)  ,Ω ∅  belong to ℑ , 
(ii) Ω  is stable under denumerable intersection: 
 

1

, 1 ,n n
n

A n A
≥

∈ℑ ∀ ≥ ⇒ ∈ℑ∩  (2.1) 

(iii) ℑ  is stable for the complement set operation 
 , .c cA A A A∈ℑ⇒ ∈ℑ = Ω −  (2.2) 
Then, using the well-known de Morgan’s laws saying that 

 
1 1 1 1

,  ,
c c

c c
n n n n

n n n n

A A A A
≥ ≥ ≥ ≥

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∪ ∩ ∩ ∪  (2.3) 

it is easy to prove that a σ -algebra ℑ  is also stable under denumerable union: 
 

1

, 1 .n n
n

A n A
≥

∈ℑ ∀ ≥ ⇒ ∈ℑ∪  (2.4) 

Any couple ( , )Ω ℑ where ℑ  is a σ -algebra is called a measurable space. 
 
The next definition concerning the concept of probability measure or simply 
probability is an idealization of the concept of the frequency of an event. Let us 
consider a random experiment called E with which is associated the couple 
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( , )Ω ℑ ; if the set A belongs to ℑ  and if we can repeat the experiment E n times, 
under the same conditions of environment, we can count how many times A 
occurs. If n(A) represents this number of occurrences, the frequency of the event 
A is defined as  

 ( )( ) .n Af A
n

=  (2.5) 

In general, this number tends to become stable for large values of n. 
The notion of frequency satisfies the following elementary properties: 
(i)   ( , , ( ) ( ) ( ),A B A B f A B f A f B∈ℑ =∅⇒ = +∩ ∪  (2.6) 
(ii)  ( ) 1f Ω = ,  (2.7) 
(iii) , , ( ) ( ) ( ) ( ),A B f A B f A f B f A B∈ℑ ⇒ = + −∪ ∩  (2.8) 
(iv) ( ) 1 ( ).cA f A f A∈ℑ⇒ = −   (2.9) 
To have a useful mathematical model for the theoretical idealization of the notion 
of frequency, we now introduce the following definition. 
 
Definition 2.2 a) The triplet ( , , )PΩ ℑ is called a probability space if Ω  is a non-
void set of elements, ℑ  a σ -algebra of subsets of Ω and P an application from 
ℑ  to [ ]0,1  such that: 

(i)   
( )

11

( , 1), , 1:

( ) ( ),

n n i j

n n
nn

A n A n i j A A

P A P A additivity of P

φ

σ
∞

=≥

≥ ∈ℑ ≥ ≠ ⇒ =

⎛ ⎞
⇒ = −⎜ ⎟

⎝ ⎠
∑

∩

∪
 (2.10) 

 (ii)  ( ) 1.P Ω =   (2.11) 
b) The application P satisfying conditions (2.10) and (2.11) is called a 
probability measure or simply probability. 
 
Remark 2.1 1) The sequence of events ( , 1)nA n ≥ satisfying the condition that 
 ( , 1), , 1:n n i jA n A n i j A A≥ ∈ℑ ≥ ≠ ⇒ =∅∩  (2.12) 
is called mutually exclusive. 
2) The relation (2.11) assigns the value 1 for the probability of the entire sample 
space Ω . There may exist events 'A  strictly subsets of Ω  such that 
 ( )' 1P A = . (2.13) 
In this case, we say that A is almost sure or that the statement defining A is true 
almost surely (in short a.s.) or holds for almost all ω .  
From axioms (2.10) and (2.11), we can deduce the following properties: 
 
Property 2.1 (i) If , ,A B∈ℑ then 
 ( ) ( ) ( ) ( ).P A B P A P B P A B= + −∪ ∩  (2.14) 
(ii) If ,A∈ℑ then 
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 ( ) 1 ( ).cP A P A= −  (2.15) 
(iii) ( ) 0.P ∅ =   (2.16) 
(iv) If ( , 1)nB n ≥  is a sequence of disjoint elements of ℑ forming a partition of 
Ω , then for all A belonging to ℑ , 

 
1

( ) ( )n
n

P A P A B
∞

=

=∑ ∩ . (2.17) 

(v) Continuity property of P: if ( , 1)nA n ≥  is an increasing (decreasing) sequence 
of elements of ℑ , then  

 
1

lim ( )n nn
n

P A P A
≥

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∪ ; 

1

lim ( )n nn
n

P A P A
≥

⎛ ⎞⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∩ . (2.18) 

 
Remark 2.2 a) Boole’s inequality asserts that if ( , 1)nA n ≥ is a sequence of 
events, then 

 
11

( ).n n
nn

P A P A
≥≥

⎛ ⎞
≤⎜ ⎟

⎝ ⎠
∑∪  (2.19) 

b) From (2.14), it is clear that we also have 
 ( ) ( ).A B P A P B⊂ ⇒ ≤  (2.20) 
 
Example 2.1 a) The discrete case 
When the sample space Ω  is finite or denumerable, we can set 
 { }1,..., ,...jω ωΩ =  (2.21) 

and select for ℑ the set of all the subsets of Ω , represented by 2 .Ω  
 
Any probability measure P can be defined with the following sequence: 
 

1
( , 1),  0, 1,  1j j j

j
p j p j p

≥

≥ ≥ ≥ =∑  (2.22) 

so that  
 { }( ) , 1.j jP w p j= ≥  (2.23) 

On the probability space ( ,2 , )PΩΩ , the probability assigned for an arbitrary 

event A = { }1
,..., , 1, 1,..., ,  if 

lk k j i jk j l k k i jω ω ≥ = ≠ ≠  is given by 

 
1

( ) .
j

l

k
j

P A p
=

=∑  (2.24) 

 
b) The continuous case 
Let Ω  be the real set ; It can be proven (Halmos (1974)) that there exists a 
minimal σ -algebra generated by the set of  intervals: 
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 ( ) [ ] [ ) ( ]{ }, , , , , , , , , ,a b a b a b a b a b a bβ = ∈ ≤ . (2.25) 
It is called the Borel σ -algebra represented by β  and the elements of β  are 
called Borel sets. 
Given a probability measure P on ( , )βΩ , we can define the real function F, 
called the distribution function related to P, as follows. 
 
Definition 2.3 The function F from  to [ ]0,1  defined by 

 ( ]( ), ( ),P x F x x−∞ = ∈  (2.26) 
is called the distribution function related to the probability measure P. 
 
From this definition and the basic properties of P, we easily deduce that: 

 
( ]( ) ( )( )
[ )( ) [ ]( )

, ( ) ( ),  , ( ) ( ),

, ( ) ( ),  , ( ) ( ).

P a b F b F a P a b F b F a

P a b F b F a P a b F b F a

= − = − −

= − − − = − −
 (2.27) 

Moreover, from (2.26), any function F from  to [ ]0,1  is a distribution function 
(in short d.f.) iff it is a non-decreasing function satisfying the following 
conditions: 
F is right continuous at every point x0, 
 

0
0lim ( ) ( ),

x x
F x F x

↑
=  (2.28) 

and moreover 
 lim ( ) 1, lim ( ) 0

x x
F x F x

→+∞ →−∞
= = . (2.29) 

If the function F is derivable on with f as derivative, we have 

 ( ) ( ) , .
x

F x f y dy x
−∞

= ∈∫  (2.30) 

The function f is called the density function associated with the d.f. F and in the 
case of the existence of such a Lebesgue integrable function on , F is called 
absolutely continuous. 
From the definition of the concept of integral, we can give the intuitive 
interpretation of f as follows; given the small positive real number xΔ , we have 
 { }( ), ( )P x x x f x x+ Δ ≈ Δ . (2.31) 
Using the Lebesgue-Stieltjes integral, it can be seen that it is possible to define a 
probability measure P on ( , )β starting from a d.f. F on  by the following 
definition of P: 
 ( ) ( ), .

A

P A dF x A= ∀ ∈ℑ∫  (2.32) 

In the absolutely continuous case, we get 
 ( ) ( ) .

A

P A f y dy= ∫  (2.33) 
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Remark 2.3 In fact, it is also possible to define the concept of d.f. in the discrete 
case if we set, without loss of generality, on 0

0( ,2 )NN , the measure P defined 
from the sequence (2.22). Indeed, if for every positive integer k, we set 

 
1

( )
k

j
j

F k p
=

=∑  (2.34) 

and generally, for any real x, 

 [ )
0, 0,

( )
( ), , 1 ,

x
F x

F k x k k
≤⎧

= ⎨ ∈ +⎩
 (2.35) 

then, for any positive integer k, we can write 
 { }( )1,..., ( )P k F k=  (2.36) 
and so calculate the probability of any event. 
 
3 RANDOM VARIABLES  
 
Let us suppose the probability space ( , , )PΩ ℑ  and the measurable space ( , )E ψ  
are given. 
 
Definition 3.1 A random variable (in short r.v.) with values in E is an 
application X from Ω  to E such that 
 1: ( )B X Bψ −∀ ∈ ∈ℑ , (3.1) 
where X-1(B) is called the inverse image of the set B defined by 
 { }1 1( ) : ( ) , ( )X B X B X Bω ω− −= ∈ ∈ℑ . (3.2) 
 
Particular cases 
a)   If ( , )E ψ = ( , )β , X is called a real random variable. 
b) If ( , ) ( , )E ψ β= , where  is the extended real line defined by 

{ } { }+∞ −∞∪ ∪ and β  the extended Borel σ -field of , that is the minimal 
σ -field containing all the elements of β  and the extended intervals 

 
[ ) ( ] [ ] ( )
[ ) ( ] [ ] ( )

, , , , , , , ,

, , , , , , , ,  ,

a a a a

a a a a a

−∞ −∞ −∞ −∞

+∞ +∞ +∞ +∞ ∈
 (3.3) 

then X is called a real extended value random variable. 
c) If ( 1)nE n= > with the product σ -field ( )nβ of β , X is called an n-
dimensional real random variable. 
d) If ( )nE = (n>1) with the product σ -field ( )nβ of β , X is called a real 
extended n-dimensional real random variable. 
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A random variable X is called discrete or continuous according as X takes at most 
a denumerable or a non-denumerable infinite set of values.  
 
Remark 3.1 In measure theory, the only difference is that condition (2.11) is no 
longer required and in this case the definition of a r.v. given above gives the 
notion of measurable function. In particular a measurable function from ( , )β  
to ( , )β  is called a Borel function.  
 
Let X be a real r.v. and let us consider, for any real x, the following subset of Ω : 
{ }: ( )X xω ω ≤ . 
As, from relation (3.2), 
 { } ( ]1: ( ) ( , ),X x X xω ω −≤ = −∞  (3.4) 
it is clear from relation (3.1) that this set belongs to the σ -algebra ℑ . 
Conversely, it can be proved that the condition 
 { }: ( )X xω ω ≤ ∈ℑ , (3.5) 
valid for every x belonging to a dense subset of , is sufficient for X being a real 
random variable defined on Ω . The probability measure P on ( , )Ω ℑ  induces a 
probability measure μ  on ( , )β  defined as 
 { }( ): ( ) : ( ) .B B P X Bβ μ ω ω∀ ∈ = ∈  (3.6) 
We say that μ  is the induced probability measure on ( , )β , called the 
probability distribution of the r.v. X. Introducing the distribution function related 
to μ , we get the next definition. 
 
Definition 3.2 The distribution function of the r.v. X, represented by XF , is the 
function from [ ]0,1→  defined by 

 ( ]( ) { }( )( ) , : ( ) .XF x x P X xμ ω ω= −∞ = ≤  (3.7) 
In short, we write 
 ( )( )XF x P X x= ≤ . (3.8) 
 
This last definition can be extended to the multi-dimensional case with a r.v. X 
being an n-dimensional real vector: 1( ,..., )nX X X= , a measurable application 
from ( , , )PΩ ℑ  to ( , )n nβ . 
 
Definition 3.3 The distribution function of the r.v. 1( ,..., )nX X X= , represented 
by XF , is the function from n to [ ]0,1  defined by  
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 { }( )1 1 1( ,..., ) : ( ) ,..., ( )X n n nF x x P X x X xω ω ω= ≤ ≤ . (3.9) 
 
In short, we write 
 1 1 1( ,..., ) ( ,..., )X n n nF x x P X x X x= ≤ ≤ . (3.10) 
Each component Xi (i=1,…,n) is itself a one-dimensional real r.v. whose d.f., 
called the marginal d.f., is given by 
 ( ) ( ,..., , , ,..., )

iX i X iF x F x= +∞ +∞ +∞ +∞ . (3.11) 
The concept of random variable is stable under a lot of mathematical operations; 
so any Borel function of a r.v. X is also a r.v. 
Moreover, if X and Y are two r.v., so are 

 { } { }inf , ,sup , , , , , XX Y X Y X Y X Y X Y
Y

+ − ⋅ , (3.12) 

provided, in the last case, that Y does not vanish. 
Concerning the convergence properties, we must mention the property that, if 
( , 1)nX n ≥  is a convergent sequence of r.v. −  that is, for allω∈Ω , the sequence 
( ( ))nX ω converges to ( )X ω − , then the limit X is also a r.v. on Ω . This 
convergence, which may be called the sure convergence, can be weakened to 
give the concept of almost sure (in short a.s.) convergence of the given sequence. 
 
Definition 3.4 The sequence ( ( ))nX ω converges a.s. to ( )X ω  if 
 { }( ): lim ( ) ( ) 1nP X Xω ω ω= = . (3.13) 
 
This last notion means that the possible set where the given sequence does not 
converge is a null set, that is a set N belonging to ℑ  such that  
 ( ) 0P N = . (3.14) 
In general, let us remark that, given a null set, it is not true that every subset of it 
belongs to ℑ  but of course if it belongs to ℑ , it is clearly a null set (see relation 
(2.20)). 
To avoid unnecessary complications, we will suppose from now on that any 
considered probability space is complete, This means that all the subsets of a null 
set also belong to ℑ  and thus that their probability is zero. 
 
4 INTEGRABILITY, EXPECTATION AND  
INDEPENDENCE  
 
Let us consider a complete measurable space ( , , )μΩ ℑ and a real measurable 
variable X defined on Ω . To any set A belonging to ℑ , we associate the r.v. AI , 
called the indicator of A, defined as 
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1, ,

( )
0, .A

A
I

A
ω

ω
ω
∈⎧

= ⎨ ∉⎩
 (4.1) 

If there exists partition ( , 1)nA n ≥  with all its sets measurable such that  
 ( ) ( ), 1n n nA X a a nω ω∈ ⇒ = ∈ ≥ , (4.2) 
then X is called a discrete variable. If moreover, the partition is finite, it is said to 
be finite. It follows that we can write X in the following form: 

 )()(
1

ωω
nA

n
n IaX ∑

∞

=

= .  (4.3) 

 
Definition 4.1 The integral of the discrete variable X is defined by 

 
1

( )n n
n

Xd a Aμ μ
∞

=Ω

=∑∫ , (4.4) 

provided that this series is absolutely convergent. 
 
Of course, if X is integrable, we have the integrability of X  too and 

 
1

( )n n
n

X d a Aμ μ
∞

=Ω

=∑∫ . (4.5) 

To define in general the integral of a measurable function X, we first restrict 
ourselves to the case of a non-negative measurable variable X for which we can 
construct a monotone sequence ( , 1)nX n ≥  of discrete variables converging to X 
as follows: 

 
⎭
⎬
⎫

⎩
⎨
⎧ +

<≤

∞

=
∑=

nn
kXk

k
nn IkX

2
1

2
:1 2

)(
ω

ω . (4.6) 

Since for each n, 

 
1( ) ( ),

10 ( ) ( ) ,
2

n n

n n

X X

X X

ω ω

ω ω

+≤

≤ − ≤
 (4.7) 

the sequence ( , 1)nX n ≥  of discrete variables converges monotonically to X on 
Ω . 
 
Definition 4.2 The non-negative measurable variable X is integrable on Ω  iff 
the elements of the sequence ( , 1)nX n ≥  of discrete variables defined by relation 

(4.6) are integrable and if the sequence nX dP
Ω

⎛ ⎞
⎜ ⎟
⎝ ⎠
∫ converges. 

From this last definition, it follows that 
 ( ) lim ( )nE X E X= , (4.8) 
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where 

 1:1 2 2

( )
2 n n

n k kn Xk

kX d I
ω

ω μ μ
∞

+⎧ ⎫≤ <⎨ ⎬=Ω ⎩ ⎭

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∑∫ . (4.9) 

To extend the last definition without the non-negativity condition on X, let us 
introduce for an arbitrary variable X, the variables X + and X −  defined by 
 { } { }( ) sup ( ),0 ,  ( ) inf ( ),0 ,X X X Xω ω ω ω+ −= = −  (4.10) 
so that 
 X X X+ −= − . (4.11) 
 
Definition 4.3 The measurable variable X is integrable on Ω  iff the non-
negative variables X +  and X −  defined by relation (4.10) are integrable and in 
this case 
 Xd X d X dμ μ μ+ −

Ω Ω Ω

= −∫ ∫ ∫ . (4.12) 

 
Remark 4.1 a) If the integral of X does not exist, it may however happen that 

  ,  X d X d X d X dμ μ μ μ+ − − +

Ω Ω Ω Ω

⎛ ⎞ ⎛ ⎞
< ∞ < ∞ = ∞ = ∞⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫ ∫ ∫ . (4.13) 

In these two cases, we say that the integral of X is infinite; more precisely, we 
have 

 Xd Xdμ μ
Ω Ω

⎛ ⎞
= −∞ = +∞⎜ ⎟

⎝ ⎠
∫ ∫ . (4.14) 

If A is an element of the σ -algebra ℑ , the integral on A is simply defined by 
 A

A A

Xd X I dμ μ=∫ ∫ . (4.15) 

Of course, X being a non-negative measurable variable with an infinite integral, it 
means that the approximation sequence (4.6) diverges to +∞ for almost all ω . 
 
Now let us consider a probability space ( , , )PΩ ℑ  and a real random variable X 
defined on Ω . In this case, the concept of integrability is designed by expectation 
represented by 
 ( )( )E X XdP XdP

Ω

= =∫ ∫ , (4.16) 

provided that this integral exists. The computation of the integral 

 XdP XdP
Ω

⎛ ⎞
=⎜ ⎟
⎝ ⎠

∫ ∫  (4.17) 

can be done using the induced measure μ  on ( , )β ,defined by relation (3.6) 
and then using the distribution function F of X. Indeed, we can write 
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 ( )
R

E X XdP Xdμ
Ω

⎛ ⎞
= =⎜ ⎟
⎝ ⎠
∫ ∫ , (4.18) 

and if FX is the d.f. of X, it can be shown that 
 ( ) ( )X

R

E X xdF x= ∫ , (4.19) 

this last integral being a Lebesgue-Stieltjes integral. Moreover, if FX is absolutely 
continuous with fX as density, we get 

 ( ) ( ) .xE X xf x dx
+∞

−∞

= ∫  (4.20) 

If g is a Borel function, we also have (see for example Chung (2000), Royden 
(1963), Loeve (1963)) 

 ( ( )) ( ) XE g X g x dF
+∞

−∞

= ∫  (4.21) 

and with a density for X, 

 ( ( )) ( ) ( )XE g X g x f x dx
+∞

−∞

= ∫ . (4.22) 

The most important properties of the expectation are given in the next 
proposition. 
 
Proposition 4.1 (i)   Linearity property of the expectation: If X and Y are two 
integrable r.v. and a,b two real numbers, then the r.v. aX+bY is also integrable 
and  
  ( ) ( ) ( ).E aX bY aE X bE Y+ = +  (4.23) 
(ii)  If ( , 1)nA n ≥ is a partition of Ω , then 

  
1

( )
n

n A

E X XdP
∞

=

=∑ ∫ . (4.24) 

(iii) The expectation of a non-negative r.v. is non-negative. 
(iv)  If X and Y are integrable r.v., then 
  ( ) ( ).X Y E X E Y≤ ⇒ ≤  (4.25) 
(v)   If X is integrable, so is X  and 
  ( )E X E X≤ . (4.26) 
(vi)  Dominated convergence theorem (Lebesgue: Let ( , 1)nX n ≥  be a sequence 
of r.v. converging a.s. to the r.v. X integrable, then all the r.v. Xn are integrable 
and moreover 
  lim ( ) (lim ) ( ( ))n nE X E X E X= = . (4.27) 
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(vii)  Monotone convergence theorem (Lebesgue): Let ( , 1)nX n ≥  be a non-
decreasing sequence of non-negative r.v; then relation (4.27) is still true 
provided that ∞+  is a possible value for each member. 
(viii) If the sequence of integrable r.v. ( , 1)nX n ≥  is such that 

  ( )
1

n
n

E X
∞

=

< ∞∑ , (4.28) 

then the random series 
1

n
n

X
∞

=
∑  converges absolutely a.s. and moreover 

  
1 1

( )  ( ( ))n n
n n

E X E X E X
∞ ∞

= =

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∑ ∑ , (4.29) 

where the r.v. is defined as the sum of the convergent series. 
 
Given a r.v. X, moments are special cases of expectation. 
 
Definition 4.4 Let a be a real number and r a positive real number, then the 
expectation 
 ( )rE X a−  (4.30) 

is called the absolute moment of X, of order r, centred on a. 
 
The moments are said to be centred moments of order r if a=E(X). In particular, 
for r=2, we get the variance of X represented by 2 (var( ))Xσ , 

 ( )22 E X mσ = − . (4.31) 

 
Remark 4.2 From the linearity of the expectation (see relation (4.23)), it is easy 
to prove that 
 2 2 2( ) ( ( ))E X E Xσ = − , (4.32) 
and so 
 2 2( )E Xσ ≤ , (4.33) 
and more generally, it can be proven that the variance is the smallest moment of 
order 2 whatever the number a is. 
 
The next property recalls inequalities for moments. 
 
Proposition 4.2 (Inequalities of Hölder and Minkowski) (i)    Let X and Y be two 
r.v. such that 

qp YX , are integrable with 

 1 11 , 1,p
p q

< < ∞ + =  (4.34) 
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then: 

 ( )( ) ( )( )
1 1

( ) p qp qE XY E X E Y≤ ⋅ . (4.35) 

(ii)   Let X and Y be two r.v. such that , ,1 ,p pX Y p≤ < ∞ are integrable, then 

 ( ) ( )( ) ( )( )
1 11

.
p pp p ppE X Y E X E Y+ ≤ +  (4.36) 

If p=2 in the first part of this last proposition, then relation (4.36) gives the 
Cauchy-Schwarz inequality 

 ( )( ) ( )( )
1 1

2 22 2( )E XY E X E Y≤ ⋅ . (4.37) 

 
The last fundamental concept we will now introduce in this section is that of 
stochastic independence, or more simply independence. 
 
Definition 4.5 The events 1,..., , ( 1)nA A n > are stochastically independent or 
independent iff 

 1 2
11

2,..., , 1,..., : : ( )
k k

m m

k k n n
kk

m n n n n n n P A P A
==

⎛ ⎞
∀ = ∀ = ≠ ≠ ≠ =⎜ ⎟

⎝ ⎠
∏∩ . (4.38) 

For n=2, relation (4.38) reduces to 
 1 2 1 2( ) ( ) ( )P A A P A P A=∩ . (4.39) 
Let us remark that piecewise independence of the events 1,..., , ( 1)nA A n >  does 
not necessarily imply the independence of these sets and thus not the stochastic 
independence of these n events. As a counter example, let us suppose we drew a 
ball from an urn containing four balls called b1, b2, b3, b4 and let us consider the 
three following events: 
 { } { } { }1 1 2 2 1 3 3 1 4, , , , ,A b b A b b A b b= = = . (4.40) 

Then assuming that the probability of having one ball is 1
4 , we get 

 1 2 1 3 2 3
1( ) ( ) ( )
4

P A A P A A P A A= = =∩ ∩ ∩ , (4.41) 

but as 

 1 2 3
1( )
4

P A A A =∩ ∩  (4.42) 

too, we do not have the relation 
 1 2 3 1 2 3( ) ( ) ( ) ( )P A A A P A P A P A=∩ ∩ , (4.43) 
and so we have proved that independence in pairs does not imply the 
independence of these three events. 
We will now extend the concept of independence to random variables. 
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Definition 4.6 (i)    The n real r.v. X1,X2,…,Xn defined on the probability space 
( ), , PΩ ℑ are said to be stochastically independent, or simply independent, iff for 
any Borel sets B1,B2,…,Bn, we have 

 { } { }( )
11

: ( ) : ( )
n n

k k k k
kk

P X B P X Bω ω ω ω
==

⎛ ⎞
∈ = ∈⎜ ⎟

⎝ ⎠
∏∩ . (4.44) 

(ii)    For an infinite family of r.v., independence means that the members of 
every finite subfamily are independent. It is clear that if X1,X2,…,Xn are 
independent, so are the r.v. 

1
,...,

ki iX X  with 1 ,  1,..., , 2,...,k ki i i n k n≠ ≠ = = . 
 
From relation (4.44), we find that 
 1 1 1 1 1( ,..., ) ( ) ( ), ( ,..., ) n

n n n n nP X x X x P X x P X x x x≤ ≤ = ≤ ≤ ∀ ∈ . (4.45) 
If the functions 

1
, ,...,

nX X XF F F  are the distribution functions of the r.v. 

1 1( ,..., ), ,...,n nX X X X X= , we can write the preceding relation under the form  
 

11 1 1( ,...., ) ( ) ( ), ( ,..., )
n

n
X n X X n nF x x F x F x x x= ⋅ ⋅ ∀ ∈ . (4.46) 

It can be shown that this last condition is also sufficient for the independence 
of 1 1( ,..., ), ,...,n nX X X X X= . If these d.f. have densities 

1
, ,...,

nX X Xf f f , relation 
(4.46) is equivalent to 
 

11 1 1( , , ) ( ) ( ), ( ,..., )
n

n
X n X X n nf x x f x f x x x= ∀ ∈… . (4.47) 

In case of the integrability of the n real r.v X1,X2,…,Xn, a direct consequence of 
relation (4.46) is that we have a very important property for the expectation of 
the product of n independent r.v.: 

 
1 1

( )
n n

k k
k k

E X E X
= =

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∏ ∏ . (4.48) 

The notion of independence gives the possibility to prove the result called the 
strong law of large numbers which says that if ( , 1)nX n ≥ is a sequence of 
integrable independent and identically distributed r.v., then 

 . .

1

1 ( )
n

a s
k

k
X E X

n =

⎯⎯→∑ . (4.49) 

The next section will present the most useful distribution functions for stochastic 
modelling. 
 
5 MAIN DISTRIBUTION PROBABILITIES 
 
Here we shall restrict ourselves to presenting the principal distribution 
probabilities related to real random variables. 
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5.1 The Binomial Distribution 
 
Let us consider a random experiment E such that only two results are possible: a 
“success”(S) with probability p and a “failure (F) with probability 1 .q p= −  If n 
independent trials are made in exactly the same experimental environment, the 
total number of trials in which the event S occurs may be represented by a 
random variable X whose distribution ( , 0,..., )ip i n=  with  
 ( ), 1,...,ip P X i i n= = =  (5.1) 
is called a binomial distribution with parameters (n,p). From basic axioms of 
probability theory seen before, it is easy to prove that 

 , 0,...,i n i
i

n
p p q i n

i
−⎛ ⎞

= =⎜ ⎟
⎝ ⎠

, (5.2) 

a result from which we get 
 ( ) , var( ) .E X np X npq= =  (5.3) 
The characteristic function and the generating function, when it exists, of X 
respectively defined by 

 
( ) ( ),

( ) ( )

itX
X

tX
X

t E e

g t E e

ϕ =

=
 (5.4) 

are given by  

 
( ) ( ) ,

( ) ( ) .

it n
X

t n
X

t pe q

g t pe q

ϕ = +

= +
 (5.5) 

 
 
Example 5.1 (The Cox and Rubinstein financial model) Let us consider a 
financial asset observed on n successive discrete time periods so that at the 
beginning of the first period, from time 0 to time 1, the asset starts from value S0 
and has at the end of this period only two possible values, uS0 and dS0 ( 
0<d<1,u>1) respectively with probabilities p and q=1-p. The asset has the same 
type of evolution on each period and independently of the past. In period i, from 
time i–1 to time i, let us associate the r.v. , 1,...,i i nξ =  defined as follows: 

 
1, with probability ,
0, with probability .i

p
q

ξ
⎧

= ⎨
⎩

 (5.6) 

The value of the asset at the end of period n is given by the r.v. Yn defined as 
 n nX n X

nY u d −=  (5.7) 
with 
 1n nX ξ ξ= + + . (5.8) 
It is clear that the r.v. Xn has a binomial distribution of parameters (n,p) and 
consequently, we get the distribution probability of Yn: 
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 0( ) , 0,..., .j n j i n i
n

n
P Y u d S p q i n

i
− −⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

 (5.9) 

This distribution is currently used in the financial model of Cox, Ross and 
Rubinstein (1979) developed in Chapter 5. 
 
5.2 The Poisson Distribution 
 
If X is a r.v. with values in  so that the probability distribution is given by 

 ( ) , 0,1,...
!

i

P X i e i
i

λ λ−= = =  (5.10) 

where λ  is a strictly positive constant, X is called a Poisson variable of 
parameter λ . This is one of the most important distributions for all applications. 
For example if we consider an insurance company looking at the total number of 
claims in one year, this variable often may be considered as a Poisson variable. 
Basic parameters of this Poisson distribution are given here: 

 
( 1) ( 1)

( ) ,  var( ) ,

( ) ,  ( ) .
it te e

X X

E X X

t e g t eλ λ

λ λ

ϕ − −

= =

= =
 (5.11) 

A remarkable result is that the Poisson distribution is the limit of a binomial 
distribution of parameters (n,p) if n  tends to +∞ and p to 0 so that np converges 
to λ . 
The Poisson distribution is often used for the occurrence of rare events. For 
example if an insurance company wants to hedge the hurricane risk in the States 
and if we know that the mean number of hurricanes per year is 3, the adjustment 
of the r.v. X defined as the number of hurricanes per year with a Poisson 
distribution of parameter 3λ =  gives the following results: 
P(X=0)=0.0498, P(X=1)=0.1494, P(X=2)=0.2240, P(X=3)=0.2240,  
P(X=4)=0.1680, P(X=5)=0.1008,P(X=6)=0.0504, P(X>6)=0.0336. 
So the probability that the company has to hedge two or three hurricanes per year 
is 0.4480. 
 
5.3 The Normal (or Laplace-Gauss) Distribution 
 
The real r.v. X has a normal (or Laplace-Gauss) distribution of parameters 

2 2( , ), , 0μ σ μ σ∈ > , if its density function is given by 

 
2

2
( )

21( ) ,
2

x

Xf x e x
μ
σ

π

−
−

= ∈ . (5.12) 

From now on, we will use the notation 2( , )X N μ σ≺ . The main parameters of 
this distribution are 
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2

2 2 2 2

( ) ,  var( ) ,

( ) exp ,  ( ) exp .
2 2X X

E X X

t tt i t g t t

μ σ

σ σϕ μ μ

= =

⎛ ⎞ ⎛ ⎞
= − = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 (5.13) 

If 20,  1μ σ= = , the distribution of X is called a reduced or standard normal 
distribution. In fact, if X has a normal distribution 2 2( , ), , 0Rμ σ μ σ∈ > , then the 
so-called reduced r.v. Y defined by  

 XY μ
σ
−

=   (5.14) 

has a standard normal distribution, thus from (5.13) with mean 0 and variance 1. 
Let Φ  be the distribution function of the standard normal distribution; it is 
possible to express the distribution function of any normal r.v. X of parameters 

2 2( , ), , 0μ σ μ σ∈ >  as follows: 

 ( ) ( )X
X x xF x P X x P μ μ μ
σ σ σ
− − −⎛ ⎞ ⎛ ⎞= ≤ = ≤ = Φ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. (5.15) 

Also from the numerical point of view, it suffices to know numerical values for 
the standard distribution. From relation (5.15), we also deduce that 

 1( ) 'X
xf x μ

σ σ
−⎛ ⎞= Φ ⎜ ⎟

⎝ ⎠
, (5.16) 

where of course from (5.12) 

 
2

21'( )
2

x

x e
π

−
Φ = . (5.17) 

From the definition of Φ , we have 

 
2

21( ) ,
2

x y

x e dy x
π

−

−∞

Φ = ∈∫  (5.18) 

and so 
 ( ) 1 ( ), 0x x xΦ − = −Φ > ,  (5.19) 
and consequently, for X normally distributed with parameters (0,1), we get 
 ( ) ( ) ( ) 2 ( ) 1,  0P X x x x x x≤ = Φ −Φ − = Φ − > . (5.20) 
In particular, let us mention the following numerical results: 

( )
( )
( )

2 0.4972( 50%),
3

0.6826( 68%),

2 0.9544( 95%),

3 0.9974( 99%).

P X m

P X m

P X m

P X m

σ

σ

σ

σ

⎛ ⎞− ≤ = ≈⎜ ⎟
⎝ ⎠

− ≤ = ≈

− ≤ = ≈

− ≤ = ≈

(5.21) 
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Remark 5.1: Numerical computation of the d.f. Φ  For applications in finance, 
for example the Black Scholes (1973) model for option pricing (see Chapter 5), 
we will need the following numerical approximation method for computing Φ  
with seven exact decimals instead of the four given by the standard statistical 
tables: 
 

 

2

52
1 5

1

2 3

4 5

1) 0 :

1( ) 1 ( ),
2

1 ,
1
0,2316419, 0,319381530,

0,356563782, 1,781477937,
1,821255978, 1,330274429,

2) 0 :
( ) 1 ( ).

x

x

x e b c b c

c
px

p b
b b
b b

x
x x

π
−

>

Φ ≈ − + +

=
+

= =
= − =
= − =
<

Φ = −Φ −

 (5.22) 

The normal distribution is one of the most often used distributions, by virtue of 
the Central Limit Theorem which says that if ( , 1)nX n ≥  is a sequence of 
independent identically distributed (in short i.i.d.) r.v. with mean m and variance 

2 ,σ  then the sequence of r.v. defined by 

 nS nm
nσ

−  (5.23) 

with 
 1 , 0n nS X X n= + + >  (5.24) 
converges in law to a standard normal distribution. This means that the sequence 
of the distribution functions of the variables defined by (5.21) converges to Φ . 
This theorem was used by the Nobel Prize winner H. Markowitz (1959) to justify 
that the return of a diversified portfolio of assets has a normal distribution. As a 
particular case of the Central Limit Theorem, let us mention de Moivre’s theorem 
starting with 

 
1,  with prob. ,

0,  with prob. 1 ,n

p
X

p
⎧

= ⎨ −⎩
 (5.25) 

so that, for each n, the r.v. defined by relation (5.22) has a binomial distribution 
with parameters (n,p). By applying now the Central Limit Theorem, we get the 
following result: 

 (0,1),
(1 )

lawn
n

S np N
np p →+∞

−
⎯⎯⎯→

−
 (5.26) 

called de Moivre‘s result. 
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5.4 The Log-Normal Distribution 
 
If the normal distribution is the most frequently used, it is nevertheless true that it 
could not be used for example to model the time evolution of a financial asset 
like a share or a bond, as the minimal value of these assets is 0 and so the support 
of their d.f. is the real half-line [ )0,+∞ . One possible solution is to consider the 
truncated normal distribution to be defined by setting all the probability mass of 
the normal distribution on the negative real half-line on the positive side, but then 
all the interesting properties of the normal distribution are lost. 
Also, in order to have a better approach to some financial market data, we have 
to introduce the log-normal distribution. The real non-negative random variable 
X has a lognormal distribution of parameters ,μ σ  −  and we will write 

( , )X LN μ σ≺ −  if the r.v. logX has a normal distribution with parameters 2,μ σ . 
Consequently, the density function of X is given by 

 

( ) ( )2
2

log
2

0, 0,

1 , 0.
2

x
X

x

f x
e x

x

μ

σ

πσ

−
−

≤⎧
⎪

= ⎨
≥⎪

⎩  (5.27) 
Indeed, we can write 

 ( ) ( )log log ,P X x P X x≤ = ≤  (5.28) 
and so 

 
( )

( )2
2

log
21 log ,

2

tx

X
xF x e dt

μ

σ μ
σσ π

−

−∞

⎛ ⎞−⎛ ⎞= = Φ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∫  (5.29) 

and after the change of variable t=logx, we get the relation (5.27). Let us remark 
that the relation (5.29) is the most useful one for the computation of the d.f. of X 
with the help of the normal d.f. For the density function, we can also write 

 1 log( )X
xf x

x
μ

σ σ
−⎛ ⎞= Φ⎜ ⎟

⎝ ⎠
. (5.30) 

The basic parameters of this distribution are given by 

( )

( )

2

2 2

2

2

2

2

( ) ,

var( ) 1 ,

.
r

r

E X e

X e e

E X e

σμ

μ σ σ

σμ

+

+

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠

=

= −

=

 (5.31) 
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Let us say that the log-normal distribution has no generating function and that the 
characteristic function has no explicit form. When 0.3σ < , some authors 
recommend a normal approximation with parameters 2( , )μ σ . 
The normal distribution is stable under the addition of independent random 
variables; this property means that the sum of n independent normal r.v. is still 
normal. That is no longer the case with the log-normal distribution which is 
stable under multiplication, which means that for two independent log-normal 
r.v. X1,X2, we have 

 ( )2 2
1 2 1 2 1 2( , ), 1,2 ,i i iX LN i X X LNμ σ μ μ σ σ= ⇒ × + +≺ ≺ . (5.32) 

 
5.5 The Negative Exponential Distribution 
 
The non-negative r.v. X has a negative exponential distribution (or simply 
exponential distribution) of parameter λ if its density function is given by 
 ( ) , 0x

Xf x e xλλ −= ≥ , (5.33) 
where λ  is a strictly positive real number. By integration, we get the explicit 
form of the exponential distribution function 
 ( ) 1 , 0x

XF x e xλ−= − ≥ . (5.34) 
Of course, FX is null for negative values of x. The basic parameters are 

 
2

1 1( ) , var ,

1 1( ) , ( ) , .
1 1

X X

E X X

t g t tt ti

λ λ

ϕ λ

λ λ

= =

= = <
− −

 (5.35) 

In fact, this distribution is the first to be used in reliability theory. 
 
5.6 The Multidimensional Normal Distribution 
 
Let us consider an n-dimensional real r.v. X represented as a column vector of its 
n components 1( ,..., ) '.nX X X=  Its d.f. is given by 
 1 1 1( ,..., ) ( ,..., )X n n nF x x P X x X x= ≤ ≤ . (5.36) 
If the density function of X exists, the relations between the d.f. and the density 
function are 

 
1

1 1
1

1 1 1

( ,..., ) ( ,..., ),
...

( ,..., ) ... ( ,..., ) ,..., .
n

n
X

X n n
n

xx

X n X n n

Ff x x x x
x x

F x x f d dξ ξ ξ ξ
−∞ −∞

∂
=
∂ ∂

= ∫ ∫
 (5.37) 
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For the principal parameters we will use the following notation: 

 2 2

2 2

( ) , 1,..., ,
(( )( )) , , 1,..., ,

(( )) , 1,..., ,

(( )( )) , , 1,..., .
(( ) ) (( ) )

k k

k k l l kl

k k k

k k l l kl
kl

k lk k k k

E X k n
E X X k l n

E X k n

E X X k l n
E X E X

μ
μ μ σ

μ σ

μ μ σ
ρ

σ σμ μ

= =

− − = =

− = =

⎛ ⎞− −
= = =⎜ ⎟

− − ⎝ ⎠

 (5.38) 

The parameters klσ are called the covariances between the r.v. Xk and Xl and the 
parameters klρ , the correlation coefficients between the r.v. Xk and Xl. It is well 
known that the correlation coefficient klρ  measures a certain linear dependence 
between the two r.v. Xk and Xl. More precisely, if it is equal to 0, there is no such 
dependence and the two variables are called uncorrelated; for the values +1 and 
–1 this dependence is certain. 
With matrix notation, the n n× matrix 
 X ijσ⎡ ⎤= ⎣ ⎦Σ  (5.39) 

is called the variance –covariance matrix of X. The characteristic function of X 
is defined as: 
 ( ) ( )( )1 1 1( .. ) '

1( ,..., ) n ni t X t X i X
X nt t E e E eϕ + += = t . (5.40) 

Let ,μ Σ  be respectively an n-dimensional real vector and an n n×  positive 
definite matrix. The n-dimensional real r.v. X has a non-degenerated n-
dimensional normal distribution with parameters ,μ Σ  if its density function is 
given by 

 
11 ( ) ' ( )

2

2

1( ) , .
(2 ) det

n
X nf e

π

−− − −
= ∈

x μ Σ x μ
x x

Σ
 (5.41) 

Then, it can be shown by integration that parameters ,μ Σ  are indeed respectively 
the mean vector and the variance-covariance matrix of X. As usual, we will use 
the notation: ( , )nX N μ Σ≺ . 
The characteristic function of X is given by 

 
1' '
2( )

i

X eϕ
−

=
μ t t Σt

t . (5.42) 
The main fundamental properties of the n-dimensional normal distribution are: 
-every subset of k r.v. of the set {X1,…,Xn} has also a k-dimensional distribution 
which is also normal; 
-the multi-dimensional normal distribution is stable under linear transformations 
of X; 
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-the multi-dimensional normal distribution is stable for addition of random 
variables, which means that if ( , ), 1,...,k n k kX N k m=μ Σ≺  and if these m random 
vectors are independent, then  
 1 1 1( , )m n m mX X N+ + + + + +μ μ Σ Σ≺ . (5.43) 
Particular case: the two-dimensional normal distribution 
In this case, we have 

 

2
1 12 12

1 2 2
1 221 2

2
1 1 21 2

1 2

2
1 2 2

( , ) ', , ,

1

,det 1 .
1

σ σ σμ μ ρ
σ σσ σ

ρ
σ ς σ

σ σ ρ
ρ

ς σ σ

−

⎡ ⎤
= = =⎢ ⎥

⎣ ⎦
⎡ ⎤−⎢ ⎥
⎢ ⎥= = −
⎢ ⎥
−⎢ ⎥
⎣ ⎦

μ Σ

Σ Σ

 (5.44) 

From the first main fundamental properties of the n-dimensional normal 
distribution given above, we have  
 2

1( , ), 1,2k k kX N kμ σ =≺ . (5.45) 
For the special degenerated case of 1ρ = , it can be proved that 

 

2 2 1 1

2 1

2 2 1 1

2 1

1 : ,

1 : ,

X X

X X

μ μρ
σ σ

μ μρ
σ σ

− −
= =

− −
= − = −

 (5.46) 

relations meaning that in this case, all the probability mass in the plan lies on a 
straight line so the two random variables X1,X2 are perfectly dependent with 
probability 1. 
To finish this section, let us recall the well-known property saying that two 
independent r.v. are uncorrelated but the converse is not true except for the 
normal distribution. 
 
6 CONDITIONING (FROM INDEPENDENCE TO 
DEPENDENCE) 
 
6.1 Conditioning: Introductory Case 
 
Let us begin to recall briefly the concept of conditional probability. Let ( , , )PΩ ℑ  
be a probability space and let A, B be elements of ℑ  and look at the number of 
occurrences of the event A whenever B has already been observed in a sequence 
of n trials of our experiment. We shall call this number ( )n A B . 
In terms of frequency of events defined by relation (2.5), we have 
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 ( ) ( )
( )

n A Bn A B
n B

=
∩ , (6.1) 

provided that n(B) is different from 0. Dividing by n the two members of relation 
(6.1), we get 

 
( )

( )

( )

n A B
n A B n

n Bn
n

=

∩

. (6.2) 

In terms of frequencies, we get 

 ( ) ( )
( )

f A Bf A B
f B

=
∩ . (6.3) 

From the experimental interpretation of the concept of probability of an event 
seen in section 2, we can now define the conditional probability of A given B as 

 ( ) ( ) , ( ) 0
( )

P A BP A B P B
P B

= >
∩ . (6.4) 

If the events A and B are independent, from relation (4.39), we get 
 ( ) ( )P A B P A= , (6.5) 
a relation meaning that, in case of independence, the conditional probability of 
set A does not depend on the given set B. As the independence of sets A and B is 
equivalent to the independence of sets A and Bc, we also have: 
 ( ) ( )cP A B P A= . (6.6) 

The notion of conditional probability is very useful for computing probabilities 
of a product of dependent events A and B not satisfying relation (4.39). Indeed 
from relations (6.4) and (6.6), we can write 
 ( ) ( )( ) ( ) ( )P A B P A P A B P B P B A= =∩ . (6.7) 
More generally, for n events A1,…,An, we get  the so-called “theorem of 
compound probability”: 

 ( ) ( )1 2 1 1 2 1
1

( ) ...
n

k n n
k

P A P A P A A P A A A A −
=

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∩ ∩∩ , (6.8) 

a relation expanding relation (6.7). 

 1
1

( )... ( )
n

k n
k

P A P A P A
=

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∩  (6.9) 

is true in the case of independence of the n considered events. If the event B is 
fixed and of strictly positive probability, relation (6.4) gives the way to define a 
new probability measure on ( , )Ω ℑ  denoted PB as follows: 

 ( )( ) ,
( )B

P A BP A A
P B

= ∀ ∈ℑ
∩ . (6.10) 
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PB is in fact a probability measure as it is easy to verify that it satisfies conditions 
(2.10) and (2.11) and so PB is called the conditional probability measure given B. 
The integral with respect to this measure is called the conditional expectation EB 
relative to PB. From relation (6.10) and since PB(B)=1, we thus obtain for any 
integrable r.v. Y: 

 1( ) ( ) ( )
( )B BE Y Y dP Y dP

P B
ω ω

Ω Ω

= =∫ ∫ . (6.11) 

For our next step, we shall now consider a countable event partition ( , 1nB n ≥ ) of 
the sample space Ω . That is, 

 
1

, ,  , :n i j
n

B B B i j i j
∞

=

Ω = =∅ ∀ ≠∩∪ . (6.12) 

Then, for every event A, we have 
 

1
( ) ( )n

n
P A P B A

≥

=∑ ∩  (6.13) 

and by relation (6.10), 
 ( )

1
( ) ( )n n

n
P A P B P A B

≥

=∑ . (6.14) 

Now, for any integrable r.v. Y, we can write 
 

1
( ) ( )

n
n B

E Y Y dPω
≥

=∑ ∫  (6.15) 

and from relation (6.11), 
 

1
( ) ( ) ( )

nn B
n

E Y P B E Y
≥

=∑ . (6.16) 

As the partition , 1nB n ≥  generates a sub-σ -algebra of ℑdenoted 1ℑ  obtained as 
the minimal sub-σ -algebra containing all the events of the given partition, we 
can now define 

1
( )E Yℑ , called the conditional expectation of Y given 1ℑ , as 

follows: 
 

1
1

( )( ) ( )1 ( )
n nB B

n
E Y E Yω ωℑ

≥

=∑ . (6.17) 

It is very important to understand that this conditional expectation is a function of 
ω  and so a new random variable. So, the random variable 

1
( )E Yℑ  assumes on 

each set B the value of ( )
nBE Y that is constant and defined by relation (6.11) with 

B=Bn. 
Now, let us compute the expectation of this new random variable

1
( )E Yℑ ; from 

relation (6.17), we can deduce that 
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( )

( )
( )

1
1

1

1

1

( )( ) ( )1 ( )

                       ( )1 ( )

                       ( ) 1 ( )

                       ( ) ( )

n n

n n

n n

n

B B
n

B B
n

B B
n

B n
n

E E Y E E Y

E E Y

E Y E

E Y P B

ω ω

ω

ω

ℑ
≥

≥

≥

≥

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

=

=

=

∑

∑

∑

∑

 (6.18) 

and finally from relation (6.16), we get 
 

1
( ( )( )) ( ).E E Y E Yωℑ =  (6.19) 

Furthermore, since for any set B belonging to 1ℑ , B is the union of a certain 
number of events Bn, finite or at the most denumerable, we obtain by integrating 
both members of relation (6.17): 

 

1
1

1

1

( )( ) ( )1 ( )

                         ( ) 1 ( )

                         ( ) ( ).

n n

n n

n

B B
nB B

B B
n B

B n
n

E Y dP E Y dP

E Y dP

E Y P B B

ω ω

ω

ℑ
≥

≥

≥

=

=

=

∑∫ ∫

∑ ∫

∑ ∩

 (6.20) 

Using now relation (6.11), we get: 

 

1
1

1

1( )( ) ( ) ( )
( )

                         ( )

                         ( ) .

                       

n

n

n
n nB B B

n B B

B

E Y dP Y dP P B B
P B B

Y dP

Y dP

ω ω

ω

ω

ℑ
≥ ∩

≥ ∩

⎛ ⎞
=⎜ ⎟⎜ ⎟
⎝ ⎠

=

=

∑∫ ∫

∑ ∫

∫

∩
∩

 (6.21) 

In conclusion, we get 
 

1 1( )( ) ( ) , .
B B

E Y dP Y dP Bω ωℑ = ∈ℑ∫ ∫  (6.22) 

Of course, for B = Ω , this last relation is identical to (6.19). 
We shall focus our attention on the meaning of result (6.22) which equates two 
integrals on every set B belonging to 1ℑ  but presenting an essential difference: in 
the left member, the integrand 

1
( )E Yℑ  is 1ℑ -measurable but in the right member, 

the integrand Y is ℑ -measurable and so not necessarily 1ℑ -measurable since 

1 .ℑ ⊂ ℑ  Furthermore, the function 
1
( )E Yℑ  is a.s. unique; indeed, let us suppose 
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that there exists another function 1ℑ -measurable f so that relation (6.22) is still 
true. Consequently, we have 
 1( ) ( ) , .

B B

f dP Y dP Bω ω= ∈ℑ∫ ∫  (6.23) 

From relations (6.22) and (6.23), we obtain 
 

1 1( ) ( ) ,
B B

f dP E dP Bω ωℑ= ∈ℑ∫ ∫  (6.24) 

so that 
 

1 1( ) ( ( ) ( )) ,
B B

f dP f E dP Bω ω ωℑ= − ∈ℑ∫ ∫ . (6.25) 

As this relation holds for all B belonging to 1ℑ , it follows that 
1
( ) ,a.s.E Y fℑ = ; 

otherwise, there would exist a set B belonging to 1ℑ  so that the difference 

1
( )E Y fℑ − would be different from 0 and so also the integral 

 
1

( ( ) ( ))
B

f E dPω ωℑ−∫  (6.26) 

in contradiction with property (6.25). 
 
6.2 Conditioning: General Case  
 
We can now extend the definition (6.17) to arbitrary sub-σ -algebras using 
property (6.22) as a definition with the help of the Radon-Nikodym theorem, 
Halmos (1974). 
 
Definition 6.1 If 1ℑ  is a sub-σ -algebra of ℑ , the conditional expectation of the 
integrable r.v. Y given 1ℑ , denoted by 

1
( )E Yℑ  or ( )1E Y ℑ , is any one r.v. of the 

equivalence class such that: 
(i)    

1
( )E Yℑ  is 1ℑ -measurable, 

(ii)   
1 1( )( ) ( ) , . 

B B

E Y dP Y dP Bω ωℑ = ∈ℑ∫ ∫   (6.27) 

In fact, the class of equivalence contains all the random variables a.s. equally 
satisfying relation (6.27). 
 
Remark 6.1 Taking Ω=B  in relation (6.27), we get 
 )())(

1
YEYEE =ℑ , (6.28) 

a relation extending relation (6.17) to the general case.  
 
Particular cases 
(i)   1ℑ  is generated by one r.v. X . 
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This case means that 1ℑ  is the sub-σ -algebra of ℑgenerated by all the inverse 
images of X and we will use as notation 
 ( )

1
( )E Y E Y Xℑ = , (6.29) 

and this conditional expectation is called the conditional expectation of Y given 
X. 
(ii)   1ℑ  is generated by  n r.v. 1,..., nX X . 
This case means that 1ℑ  is the sub-σ -algebra of ℑgenerated by all the inverse 
images of 1,..., nX X  and we will use as notation 
 

1 1( ) ( ,..., )nE Y E Y X Xℑ = , (6.30) 
and this conditional expectation is called the conditional expectation of Y given 

1,..., nX X . In this latter case, it can be shown (Loeve (1977)) that there exists a 
version 1( ,..., )nX Xϕ  of the conditional expectation so that ϕ  is a Borel function 
from n to and as such it follows that 1( ,..., )nE Y X X  is constant on each set 
belonging to 1ℑ  for which 1 1( ) ,..., ( )n nX x X xω ω= = , for instance. This justifies 
the abuse of notation 
 ( )1 1 1( ) ,..., ( ) ( ,..., )n n nE Y X x X x x xω ω ϕ= = =  (6.31) 
representing the value of this conditional expectation on all the ω ’s belonging to 
the set { }1 1: ( ) ,..., ( )n nX x X xω ω ω= = . Taking B = Ω   in relation (6.28), we get 

( )1 1 1 1( ) ( ) ,..., ( ) ( ( ) ,..., ( ) )
n

n n n n
R

E Y E Y X x X x dP X x X xω ω ω ω= = = ≤ ≤∫ , (6.32) 

a result often used in the sequel to evaluate the mean of a random variable using 
its conditional expectation with respect to some given event. 
(iii)   If { }1 ,ℑ = ∅ Ω , we get 1( ) ( )E Y E Yℑ = and if { }1 , , ,cB Bℑ = ∅ Ω , then 

1( ) ( )E Y E Y Bℑ = on B and 1( ) ( )cE Y E Y Bℑ = on Bc. 
(iv)      Taking as r.v. Y the indicator of the event A, that is to say 

 ( )

1, ,
1

0, ,A

A
Aω

ω
ω
∈⎧

= ⎨ ∉⎩
 (6.33) 

the conditional expectation becomes the conditional probability of A given 
1ℑ denoted as follows: 

 1 1( ) (1 ( ) )AP A E ωℑ = ℑ  (6.34) 
and then relation (6.27) becomes 
 ( )1 1( ) ( ),

B

P A dP P A B Bωℑ = ∈ℑ∫ ∩ . (6.35) 

Letting B = Ω  in this final relation, we get 
 ( )( )1 ( ),E P A P Aℑ =  (6.36) 
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a property extending the theorem of total probability (6.14). If moreover, A is 
independent of 1ℑ , that is to say, if for all B belonging to 1ℑ  
 ( ) ( ) ( )P A B P A P B=∩ , (6.37) 
then we see from relation (6.34) that 
 ( )1 ( ) ( ),P A P Aω ωℑ = ∈Ω . (6.38) 

Similarly, if the r.v. Y is independent of 1ℑ , that is to say if for each event B 
belonging to 1ℑ and each set A belonging to the σ -algebra generated by the 
inverse images of Y, denoted by σ (Y), the relation (6.37) is true, then from 
relation (6.27), we have 
 ( )1 ( )E Y E Yℑ = . (6.39) 
Indeed, from relation (6.37), we can write that 

 
( )

1 1( )( ) ( ) ,

                         1
                          ( ) ( )

                         ( ) ,

B B

B

B

E Y dP Y dP B

E Y
E Y P B

E Y dP

ω ωℑ = ∈ℑ

=

=

=

∫ ∫

∫

 (6.40) 

and so, relation (6.39) is proved. In particular, if 1ℑ  is generated by the r.v. 
X1,…,Xn, then the independence between Y and 1ℑ  implies, that 
 ( )1 ,..., ( )nE Y X X E Y= . (6.41) 
Relations (6.39) and (6.41) allow us to have a better understanding of the 
intuitive meaning of conditioning. Under independence assumptions, 
conditioning has absolutely no impact, for example, on the expectation or the 
probability, and on the contrary, dependence implies that the results with or 
without conditioning will be different, this fact meaning that we can interpret 
conditioning as given additional information useful to get more precise results in 
the case of dependence of course. 
The properties of expectation, quoted in section 4, are also properties of 
conditional expectation, true now a.s., but there are supplementary properties 
which are very important in stochastic modelling. They are given in the next 
proposition. 
 
Proposition 6.1 (Supplementary properties of conditional expectation) 
On the probability space ( , , )PΩ ℑ , we have the following properties: 
(i)     If the r.v. X is 1ℑ -measurable, then  
  1( ) , . .E X X a sℑ =  (6.42) 
(ii)    Let X be a r.v. and Y 1ℑ -measurable, then  
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  1 1( ) ( ), . .E XY YE X a sℑ = ℑ  (6.43) 
This property means in fact that 1ℑ -measurable random variables are like 
constants for the classical expectation. 
(iii)    Since from relation (6.27), we have that ( ) ,E Y Yℑ =  taking

1
( )Y E Yℑ= , we 

see that 
 

1 1
( ( )) ( )E E Y E Yℑ ℑ ℑ= , (6.44) 

and of course since 
 

1 1
( ( )) ( ),E E Y E Yℑ ℑ ℑ=  (6.45) 

putting these last two relations together, we get 
 

1 1 1
( ( )) (( )) ( )E E Y E E Y E Yℑ ℑ ℑ ℑ ℑ= = . (6.46) 

 
This last result may be generalised as follows. 
 
Proposition 6.2 (Smoothing property of conditional expectation) Let 1 2,  ℑ ℑ  be 
two sub-σ -algebras of ℑ  such that 1 2 ;ℑ ⊂ ℑ  then it is true that 
 

2 1 1 2 1
( ( )) ( ( )) ( )E E Y E E Y E Yℑ ℑ ℑ ℑ ℑ= = , (6.47) 

a property called the smoothing property in Loeve (1977). 
 
A particular case of relation (6.47) is for example that 
 ( )( ) ( )( ) ( )1 1 1 1 1,..., ,...,n nE E Y X X X E E Y X X X E Y X= = . (6.48) 

This type of property is very useful for computing probabilities using 
conditioning and will often be used in the following chapters. 
Here is an example illustrating this interest for sums of a random number of 
random variables with the so-called Wald identities. 
 
Example 6.1 (Wald’s identities) Let ( , 1)nX n ≥ be a sequence of i.i.d. real 
random variables and N a non-negative r.v. with integer values independent of 
the given sequence. The random variable defined by 

 
1

N

N n
n

S X
=

=∑  (6.49) 

is called a sum of a random number of random variables and the problem to be 
solved is the computation of the mean and the variance of this sum supposing 
that the r.v. Xn have a variance. 
From relation (6.28), we have that 
 ( )( )( )N NE S E E S N=  (6.50) 

and as, from the independence assumptions, 
 ( ) ( )NE S N NE X= , (6.51) 



 
 
 
 
 

 
30                                                                                                                  Chapter 1 

we also have 
 ( ) ( ) ( ),NE S E N E X=  (6.52) 
the so-called the first Wald’s identity: 
For the variance of SN , as  
 2 2var( ) ( ) ( ( ))N N NS E S E S= − , (6.53) 
it suffices to evaluate 2( )NE S  as we did above. From relation (6.28), we can write 
that: 
 ( )( )2 2( )N NE S E E S N= . (6.54) 

As 

 ( )
2

2

1

N

N i
i

E S N E X N
=

⎛ ⎞⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ , (6.55) 

we obtain on the set { }: ( )N nω ω = : 

 

( )
2

2

1

2

1 1

2

                      var

                      var( ) ( ( )) .

n

N i
i

n n

i i
i i

E S N n E X

X E X

n X nE X

=

= =

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞
= + ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
= +

∑

∑ ∑  (6.56) 

Therefore, from relation (6.54), 

 
2 2 2

2 2

( ) ( var( ) ( ( ) )

            ( ) var( ) ( )( ( ) ),
NE S E N X N E X

E N X E N E X

= +

= +
 (6.57) 

and thus, by relations (6.54) and the first Wald’s identity (6.53), we get: 
 2 2 2 2var( ) ( ) var( ) ( )( ( )) ( ( )) ( ( ))NS E N X E N E X E X E N= + −  (6.58) 
and finally we obtain the second Wald’s identity in the form 
 2var( ) ( ) var( ) var( )( ( ))NS E N X N E X= + . (6.59) 
 
6.3 Regular Conditional Probability 
 
The general definition (6.27) gives the conditional expectation of a r.v. Y given 

1ℑ  by an implicit relation. Now the question is: can we define the conditional 
expectation with an explicit relation? To give the answer, let us begin with the 
conditional probability defined by relation (6.34); We know that the conditional 
probability ( )1P A ℑ is a r.v., not unique but a.s. unique and this implies that 

( )1P A ℑ  as a set function on ℑ  has a.s. the properties of probability measures: 

(i)     ( )1 ( ) 1P ωΩ ℑ = ,  (6.60) 
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(ii)    ( )1 ( ) 0 ,P A Aωℑ ≥ ∀ ∈ℑ   (6.61) 

(iii)   ( )1 1
11

( ) ( ),  , , ,

, , .

n n n i j
nn

P A P A A n A A

i j i j

ω ω
∞ ∞

==

⎛ ⎞
ℑ = ℑ ∈ℑ ∀ ∩ =∅⎜ ⎟

⎝ ⎠
∀ ∀ ≠

∑∪  (6.62) 

It is important to note here that the null events 1 2 3, ,N N N , on which respectively 
these last three properties are not true, are generally not identical, so that for each 
ω , the random set function ( )1. ( )P ωℑ from ℑ  to [ ]0,1  is not necessarily a 
probability measure since, to be so, these three sets must be identical. That is 
why we must introduce the concept of regular conditional probability (see Loeve 
(1977) or Gikhman and Skorokhod (1980)). 
 
Definition 6.2 The conditional probability ( )1. ( )P ωℑ is a regular conditional 

probability if there exists a function p(.,.) from ℑ×Ω  to [ ]0,1  so that: 
(i)   for almost all ω  of Ω , (., )p ω , as a set function on ℑ , is a probability 
measure, 
(ii)  for every fixed event A belonging to ℑ , p(A,.) is ℑ -measurable and is a 
version of the given conditional probability, that is a.s., we have 
 ( )( , ) ( )p A P Aω ω= ℑ . (6.63) 
 
The interest of such regular conditional probabilities is that we can express the 
related conditional expectation of an integrable r.v. X a.s. as an integral with 
respect to the measure (., )p ω : 
 ( )1 ( ) ( ') ( ', )E X X p dω ω ω ω

Ω

ℑ = ∫ . (6.64) 

In many applications, it is sufficient to restrict the attention to all events of the 
sub-σ -algebra generated by a r.v. X, with values in the measurable space ( , )E ψ , 
and denoted by ( )Xσ . This means that we are only interested in the following 
conditional probabilities: 
 ( )1 ,  ( )P A A Xσℑ ∈ . (6.65) 

If the conditional probability given 1ℑ is regular, we can then define the function 
C from ( )Xσ ×Ω  to [ ]0,1  as  

 ( )1( , ) ( ), ( ),C A P A A Xω ω σ ω= ℑ ∈ ∈Ω  (6.66) 
satisfying 
(i)    for almost all ω  of Ω , (., )C ω , as a set function on ( )Xσ , is a probability 
measure, 
(ii)   for every fixed event A belonging to ( )Xσ , C(A,.) is ℑ -measurable, 
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(iii)  for every event A belonging to ( )Xσ and for every event B belonging to ℑ , 
we have 
 ( , ) ( ) ( )

B

C A P d P A Bω ω =∫ ∩ . (6.67) 

C is called the conditional distribution of X given 1ℑ  and the mixed conditional 
distribution of X given 1ℑ is defined as the function Q(.,.) from ψ ×Ω  to [ ]0,1  
defined by: 
 { }( )1( , ) ' : ( ') ( ),Q S P X S Sω ω ω ω ψ= ∈ ℑ ∈ . (6.68) 

The problem of the existence of regular conditional probability was solved by 
Loeve (1977) or Gikhman and Skorokhod (1980). For our goal, let us just say 
that this is the case if ℑ  is generated by a finite or countable family of random 
variables or if the space E is a complete separable metric space. In the particular 
case of an n-dimensional real r.v. X=(X1,…,Xn),we can now introduce the very 
useful definition of the conditional distribution function of X given 1ℑ defined as 
follows: 

 
( )
{ }( )

1 1 1 1 1

1 1

( ,..., , ) ,...,

                      ': ( ') ,..., ( ') , .
n n n

n n

F x x P X x X x

Q X x X x

ω

ω ω ω ω

ℑ = ≤ ≤ ℑ

= ≤ ≤
 (6.69) 

Another useful definition concerns an extension of the concept of the 
independence of random variables to the definition of conditional independence 
of the n variables 1, , .nX X…  For all (x1,…,xn) belonging to n , we have the 
following identity: 

 
1 1

1

( ,..., , ) ( , ),
n

n k
k

F x x F xω ωℑ ℑ
=

=∏  (6.70) 

where of course we have 
 ( )1( , )k k kF x P X xωℑ = ≤ ℑ  (6.71) 
according to the definition (6.69) with n=1. 
 
Example 6.2 On the probability space ( , , )PΩ ℑ , let (X,Y) be a two-dimensional 
real r.v. whose d.f. is given by 
 ( , ) ( , ).F x y P X x Y y= ≤ ≤  (6.72) 
As 2 is a complete separable metric space, it is said above that there exist 
regular conditional probabilities given the sub-σ -algebras ( )Xσ  or ( )Yσ and so 
the related conditional d.f. denoted by  
 { }( ) { }( ): ,  :X Y Y XF x Y y F y X xω ω= =  (6.73) 

also exists. If moreover, the d.f. F has a density f, we can also introduce the 
concept of conditional density for both functions ,  , XX Y Y XF F F , giving at the 
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same time an intuitive interpretation of conditioning in this special case. We 
know that for every fixed (x,y): 
 ( , ) ( , , , ) ( , ),f x y x y x y x y P x X x x y Y y yοΔ Δ + Δ Δ = < ≤ + Δ < ≤ + Δ  (6.74) 
where ( , , , ) 0x y x yο Δ Δ →  for ( , ) (0,0)x yΔ Δ →  and similarly for the marginal 
density function of X: 
 ( ) ( , ) ( ),Xf x x x x P x X x xοΔ + Δ = < ≤ + Δ  (6.75) 
where ( , ) 0x xο Δ →  for 0xΔ →  with of course: 
 ( ) ( , )X

R

f x f x y dy= ∫ . (6.76) 

Using formula (6.4), we thus obtain 

 ( ) ( , ) ( , , , )
( ) ( , )X

f x y x y x y x yP y Y y y x X x x
f x x x x

ο
ο

Δ Δ + Δ Δ
< ≤ + Δ < ≤ + Δ =

Δ + Δ
. (6.77) 

Letting xΔ  tend to 0, we get 

 ( )
0

( , )lim
( )x

X

f x yP y Y y y x X x x y
f xΔ →

< ≤ + Δ < ≤ + Δ = Δ . (6.78) 

This relation shows that the function Y Xf  defined by 

 ( ) ( , )
( )Y X

X

f x yf y x
f x

=  (6.79) 

is the conditional density of Y, given X. Similarly the conditional density of X, 
given Y,  is given by 

 ( ) ( , )
( )X Y

Y

f x yf x y
f y

= . (6.80) 

Consequently, for any Borel subsets A and B of , we have 

 
( ) ( )

( )

1( ) ( , ) ,
( )

(( , ) ) ( , ) ( ) .

X Y
YA A

YX Y
A B B A

P X A Y y f x y dx f x y dx
f y

P X Y A B f x y dxdy f x y dx f y dy

ω

∩

∈ = = =

⎛ ⎞
∈ = = ⎜ ⎟

⎝ ⎠

∫ ∫

∫ ∫ ∫∩
 (6.81) 

The last equalities show that the density of (X,Y) can also be characterised  by 
one marginal d.f. and the associated conditional density, as from relations (6.78) 
and (6.81): 
 X YY X X Yf f f f f= × = × . (6.82) 

It is possible that conditional means exist; if so they are given by the relations 
 ( ) ( ) ( ) ( ),  E X Y y f x y dx E Y X x f y x dy= = = =∫ ∫ . (6.83) 

The conditional mean of X (resp.Y) given Y=y (resp. X=x)can be seen as a 
function of the real variable y (resp. x) called the regression curve of X (resp.Y) 
given Y (resp. X). The two regression curves will generally not coincide and not 
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be straight lines except if the two r.v. X and Y are independent because, in this 
case, we have from relations (6.78) and (6.80) that 
 ,  X YX Y Y Xf f f f= =  (6.84) 

and so: 
 ( ) ( )( ), ( )E X Y E X E Y X E Y= = , (6.85) 
proving thus that the two regression curves are straight lines parallel to the axes 
passing through the “centre of gravity” (E(X), E(Y)) of the probability mass 
in 2 . 
In the special case of a non-degenerated normal distribution for (X,Y) with vector 
mean (m1,m2) and variance covariance matrix 

 
2
1 12

2
21 2

σ σ
σ σ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Σ , (6.86) 

it can be shown that the two conditional distributions are also normal with 
parameters 

 

2 22
2 2 1 2

1

2 21
2 1 2 2

2

( ), (1 ) ,

1 ( ), (1 ) .

Y X N x

X Y N y

σμ ρ μ σ ρ
σ

σμ μ σ ρ
ρ σ

⎛ ⎞
+ − −⎜ ⎟

⎝ ⎠
⎛ ⎞

+ − −⎜ ⎟
⎝ ⎠

≺

≺
 (6.87) 

Thus, the two regression curves are linear. 
 
7 STOCHASTIC PROCESSES 
 
In this section, we shall always consider a complete probability space ( ), ,Ω ℑ Ρ  
with a filtration F. Let us recall that a probability space ( ), ,Ω ℑ Ρ  is complete if 
every subset of an event of probability 0 is measurable, i.e., in the σ -algebra ℑ , 
and so also of probability 0. 
 
Definition 7.1 F being a filtration on the considered basic probability space  
means that F is a family  ( ),t t Tℑ ∈ of sub-σ -algebras ofℑ ,the index set T being 
either the natural set { }0,1,..., ,...n  or the positive real half-line[ )0,∞ , such that: 

0

(i) ,

(ii) ,

(iii)  contains all subsets with probability 0.

s t

t u
u t

s t

>

< ⇒ ℑ ⊂ ℑ

ℑ = ℑ

ℑ

∩  (7.1) 

 
Assumption (ii) is called the right continuity property of the filtration F. Any 
filtration satisfying these three assumptions is called a filtration satisfying the 
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usual assumptions. The concept of filtration can be interpreted as a family of 
amounts of information so that tℑ  gives all the observable events at time t. 
 
Definition 7.2 The quadruplet ( ( )( ) , , , ,t t TΩ ℑ Ρ ℑ ∈  is called a filtered 
probability space. 
 
Definition 7.3 A random variable : Tτ Ω  is a stopping time i: 
 { }:  : ( ) .tt T tω τ ω∀ ∈ ≤ ∈ℑ  (7.2) 
 
The interpretation is the following: the available information at time t gives the 
possibility to observe the event given in (7.2) and to decide for example if one 
stops the future observations after time t, or not. We have the following 
proposition: 
 
Proposition 7.1 The random variable τ  is a stopping time if and only if 
 { }: ( ) ,  .tt t Tω τ ω < ∈ℑ ∀ ∈  (7.3) 
 
Definition 7.4 A stochastic process (or simply process) with values in the 
measurable space ( ),E ℵ  is a family of random variables 
 { },tX t T∈  (7.4) 
where for all t: 

( ): ,  , .tX E measurableΩ ℑℵ −  
 
This means, in particular, that for every subset B of the σ -algebra ℵ , the set  
 ( ) { }1 : ( )t tX B X Bω ω− = ∈  (7.5) 
belongs to the  σ -algebra ℑ.  
 
Remark 7.1 If ( ) ( ), ,E βℵ = , the process is called a real stochastic process 

with values in ; if ( ) ( ), ,n nE βℵ = , it is called a real multidimensional 

process with values in n . 
 
If T is the natural set{ }0,1,..., ,...n , the process X is called a discrete time 
stochastic process or a random sequence; if T is the positive real half-line 0,∞[ ), 
the process X is called a continuous time stochastic process.  
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Definition 7.5 The stochastic process X is adapted to the filtration F if, for all t, 
the r.v. X t  is tℑ -measurable. This means that, for all ,t T∈  
 ( ) { }1 : ( ) , .t t tX B X B Bω ω− = ∈ ∈ℑ ∀ ∈ℵ  (7.6) 
 
Definition 7.6 Two processes X and Y are indistinguishable if a.s., for all t T∈ , 
 .t tX Y=  (7.7) 
 
This means that 
 ( ), 1.t tX Y t TΡ = ∀ ∈ =  (7.8) 
 
Definition 7.7 The process X (or Y) is a modification of the process Y (or X) if  
a.s., for all t T∈ , 
 t tX Y=  a.s. (7.9) 
 
This means that 
 ( )., 1.t tX Y t TΡ = ∀ ∈ =  (7.10) 
for all t T∈ . 
 
Definition 7.8 For every stochastic process X, the function from T to E, 

 ( )tt X ω  (7.11) 
defined for each ω∈Ω , is called a trajectory or sample path of the process. 
 
It must be clearly understood that the so-called "modern" study of stochastic 
processes is concerned with the study of the properties of these trajectories. For 
example, we can affirm that if two processes X and Y are indistinguishable, then 
there exists a set N belonging to ℑ  of probability 0 such that: 
 : ( ) ( ), .t tN X Y t Tω ω ω∀ ∉ = ∀ ∈  (7.12) 
In other words, for each ω  element of the set ,NΩ−  the two functions 

( ) and ( )t tt X t Yω ω  are equal. As the basic probability space is complete, 
the neglected set N belongs to tℑ , for all t T∈ . 
 
Definition 7.9 A real stochastic process X is càdlàg (continu à droite, limite à 
gauche) if a.s. the trajectories of X are right continuous and have left limits at 
every point t.  
 
Definition 7.10 If X is a real stochastic process and a set βΛ∈ , then the r.v. 
defined b: 
 { }( ) inf 0 : ( )tT t Xω ω= > ∈Λ  (7.13) 
is called the hitting time of Λ  by the process X. 
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It is easily shown that the properties of stopping and hitting times are (see 
Protter (1990)):  
(i) If X is càdlàg, adapted and βΛ∈ , then the hitting time related to Λ  is a 
stopping time. 
(ii) Let S and T be two stopping times, then the r.v. 
 { }( ) { }( )min , , max , , , ( 1)S T S T S T S T S T Sα α∧ = ∨ = + >  (7.14) 
are also stopping times. 
 
Definition 7.11 If T is a stopping time, the σ -algebra Tℑ  defined by 
 { }{ }: : ( ) , 0T tT t tω ωℑ = Λ∈ℑ Λ ≤ ∈ℑ ∀ ≥∩  (7.15) 
is called the stopping time σ -algebra. 
 
In fact, the σ -algebra Tℑ  represents the information of all observable sets up to 
the stopping time T. We can also say that Tℑ  is the smallest stopping time 
containing all the events related to the r.v. ( ) ( )TX ω ω for all the adapted càdlàg 
processes X or generated by these r.v. We also have for two stopping times S and 
T, 
(i) a.s. ,S TS T≤ ⇒ ℑ ⊂ ℑ   (7.16) 
(ii) , .S T S T∧ℑ ℑ = ℑ∩   (7.17) 
 
8 MARTINGALES 
 
In this section, we shall briefly present some topics related to the most well-
known category of stochastic processes called martingales. Let X be a real 
stochastic process defined on the filtered complete probability space 

( )( ), , , ,tP t TΩ ℑ ℑ ∈ . 
 
Definition 8.1 The process X is called a martingale if: 
(i) ( )0, ,tt E X∀ ≥ ∃   (8.1) 
(ii) ( )| ,a.s.t s ss t E X X X< ⇒ =   (8.2) 
 
The latter equality is called the martingale property or the martingale equality. 
 
Definition 8.2 The process X is called a super-martingale (resp. sub-martingale) 
if: 
(i)    ( )0, ,tt E X∀ ≥ ∃   (8.3) 
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(ii) ( )| ( ) ,a.s.t s ss t E X X< ⇒ ℑ ≤ ≥   (8.4) 
 
The martingale concept is interesting; indeed, as the best estimator at time s (s>t) 
for the value of tX , as given by the conditional expectation appearing in relation 
(8.2), the martingale equality means that the best predicted value simply is the 
observed value of the process at the time of predicting s. The use of martingales 
in finance is frequently (see Janssen and Skiadas (1995)) to model the concept of 
an efficient financial market. 
 
Definition 8.3 The martingale X is closed if: 

( )
[ ) ( )

  :

(i) ,

(ii) 0, : ,a.s.t t

Y

Y

t Y X

∃

Ε < ∞

∀ ∈ ∞ Ε ℑ =

  (8.5) 

 
It is possible to prove the following result (see for example Protter (1990)). 
 
Proposition 8.1 (i)    If X is a supermartingale, then the function ( )tt E X  is 
right continuous iff there exists a unique modification Y of X such that Y is 
càdlàg. 
(ii)   If X is a martingale then, up to a modification, the function ( )tt E X  is 
right continuous. 
 
It follows that every martingale such that the function ( )tt E X  is right 
continuous is càdlàg. 
The two most important results about martingales are the martingale 
convergence theorem and the optional sampling (or Doob's) theorem. Before 
giving these results, we still need a final technical definition. 
 
Definition 8.4 (Meyer (1966)) A family ( ),u Auξ ∈  where A is an infinite index 

set, is uniformly integrable if: 
 
 

{ }: ( )

limsup ( ) ( ) 0
n

n

d
α

α
α ω ξ ω

ξ ω ω
→∞

≥

Ρ =∫ .  (8.6) 

 
Proposition 8.2 Let X be a supermartingale in such a way that the function 

( )tt E X  is right continuous such that: 

 
[ )

( )
0,

sup t
t

E X
∈ ∞

< ∞ ; (8.7) 
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then, there exists a r.v. Y such that 

 ( )(i) ,

(ii) lim , a.s.
tt

E Y

Y X
→∞

=
 (8.8) 

Moreover, if X is a martingale closed by the r.v. Z, then the r.v. Y also closes X 
and 
 ( ) ,Y E Z ∞= ℑ  (8.9) 
where  

 
0

.t
t

σ∞
≤ <∞

⎛ ⎞
ℑ = ℑ⎜ ⎟

⎝ ⎠
∪  (8.10) 

 
With the aid of the concept of uniform integrability, we can obtain the following 
corollary. 
 
Corollary 8.1  (i)  Let X be a right continuous martingale and uniformly 
integrable; then the  limit 
 lim tt

Y X
→∞

=  (8.11) 

exists a.s.; moreover 1Y L∈ and the r.v. Y closes the martingale X. 
(ii)   Let X be a right continuous martingale; then ( , 0)tX X t= ≥ is uniformly 
integrable if and only if 
 lim tt

Y X
→∞

=  (8.12) 

exists a.s., 1Y L∈ , and [ ]( ), 0,tX t∈ ∞  is a martingale with, a.s. 
 .X Y∞ =  (8.13) 
 
Now, an interesting question is: what happens if we observe a martingale X at 
two stopping times S,T (S<T, a.s.)? The reply is given by the so-called optional 
sampling theorem also called  Doob‘s theorem. 
 
Proposition 8.3 (The optional sampling theorem or Doob‘s theorem) Let X be a 
right continuous martingale closed by X∞  and let S and T be two stopping times 
so that a.s. S < T; then the r.v. 1,S TX X L∈  and 
 ( ) ,  a.s.S T SX E X= ℑ  (8.14) 
 
This important theorem means that if we restrict the random observation time set 
to S ,T{ }, then the restriction of the martingale to this set is still a martingale 
provided that S and T are two stopping times with of course S<T, a.s. This result 
is interesting for the concept of stopped process. 
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Definition 8.5 Let X be a stochastic process and T a stopping time. The stopped 
stochastic process TX  is defined by 
 [ ]( ), 0,T T

tX X t= ∈ ∞  (8.15) 

where 

 
{ }

( ) ( ),
inf , .

T
t t TX X

with t T t T
ω ω∧=

∧ =
 (8.16) 

 
From this definition, it follows that if the process X is adapted and càdlàg, then so 
is the stopped process TX . This is due to the fact that t ∧ T  is also a stopping 
time and moreover, 

 { } { }1 1 .T
t t Tt T t TX X X< ≥= +  (8.17) 

This leads to the last result we want to mention. 
 
Proposition 8.4 Let X be a right continuous uniformly integrable martingale; 
then the stopped process [ ]( ), 0,T

t TX X t∧= ∈ ∞  has the same properties with 

respect to the filtration [ ]( ), 0, .t tℑ ∈ ∞  
 
9 BROWNIAN MOTION 
 
There are a lot of particular stochastic processes and some of them will be 
extensively studied in the sequel, such as renewal processes, random walks, 
Markov chains, semi-Markov and Markov processes and their main extensions. 
However, to finish this introduction to probability theory, we want to introduce 
briefly the concept of Brownian motion or Brownian process. We will work on a 
basic complete filtered probability space satisfying the usual assumptions and 
denoted [ )( )( ), , , , 0, .tP tΩ ℑ ℑ ∈ ∞  

 
Definition 9.1 The real stochastic process [ )( ), 0,tB B t= ∈ ∞  will be called a 
Brownian motion or Brownian or Wiener process with trend μ  and variance 

2σ provided that: 
(i)   B is adapted to the basic filtration, 
(ii)  B has independent increments, 
i. e. that: 

 

( ) ( ),  (0 ) :  ,

  ,
t s S t ss t s t P B B A P B B A

Borel sets B

∀ ≤ < − ∈ ℑ = − ∈

∀
 (9.1) 

(iii) B has stationary increments, i.e.: 
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2,  (0 ) :       ( ( - ), ( - )),t ss t s t B B has a normal distribution N t s t sμ σ∀ ≤ < −  (9.2) 

(iv)  ( )0 1,  ( ).P B x x= = ∈   (9.3)  
 
If moreover, we have 
 20,  1,  0,xμ σ= = =  (9.4) 
then the Brownian motion is called standard. 
Let us now give the most important properties of the standard Brownian motion. 
 
Property 9.1 If B is a Brownian motion, then there exists a modification of B, the 
process B*, such that B* has, a.s., continuous trajectories. 
 
Property 9.2 If B is a standard Brownian motion, then B is a martingale. 
 
Property 9.3 If B is a standard Brownian motion, then the process Q where 

 [ )( )2 , 0,tQ B t t= − ∈ ∞  (9.5) 
 is a martingale. 
 
Remark 9.1 It can also be proved that both Properties 9.2 and 9.3 characterise 
a standard Brownian motion. 
 
Property 9.4 If B is a standard Brownian motion, then for almost allω , the 
trajectory ( )tBω ω  is not of bounded variation on every closed interval 
[ ], .a b  
This explains why it is necessary for models in finance and in insurance to define 
a new type of integral, called the Itô or stochastic integral, if we want to 
intregrate with respect to B (see for example Protter (1990)). This will be done in 
Chapter 5, section 4.2. 
 



Chapter 2 
 
RENEWAL THEORY AND MARKOV CHAINS 
 
In this chapter, the reader will find a summary of the basic results on renewal 
theory and Markov processes useful for understanding of the following chapters. 
A more detailed version with proofs can be found in Janssen and Manca (2006) 
(Chapters 2 and 3) 
 
1 PURPOSE OF RENEWAL THEORY 
 
Let us consider the following reliability problem: at time 0, the given system 
starts with a new component which fails at random time 1T . At this time, a new 
component immediately enters the system to replace the first one and fails at time 
c. There is another immediate replacement by a new component inserted in the 
system, still of the same type, and so on. 
We will note ( ), 0nT n ≥  the successive replacement times, setting, of course: 
 0 0T = . (1.1) 
The lifetimes of the successive components entering the system are given by 
 1, 1n n nX T T n−= − ≥ . (1.2) 

Figure 1.1:trajectory of ( )N t  
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From an operational point of view, an important characteristic of the considered 
system at time t is the total number of replacements occurring on the 
interval [ ]0,t . Let us remark that, for the moment, we do not take into account 
the initial component. If ( )N t  represents the random variable we have just 
defined, we have, for 1n ≥ : 
 ( ) 1 nN t n T t> − ⇔ ≤ . (1.3) 
It is possible to represent a realization of the stochastic process ( )( ), 0N t t ≥ , 
as shown in Figure 1.1. 
The first moment of ( )N t  will give the mean number of replacements on (0, ]t . 
In particular, if at time 0 the manager must be able to have an inventory large 
enough to perform all replacements, the level of the inventory will be, on 
average, the expectation ( )( )E N t . Of course, the manager must add buffer 
stock to prevent random evolution. This problem will be solved in section 7. The 
area of probability studying such processes is called Renewal Theory. It is, at 
least for applied probability, one of the most important topics encountered in real 
life problems. 
 
2 MAIN DEFINITIONS 
 
Let ( ), 1nX n ≥  be a sequence of non-negative, independent and identically 
distributed random variables defined on the probability space ( ), , PΩ ℑ . 
 
Definition 2.1 The random sequence ( ), 0nT n ≥ , where: 
 0 0T =    a.s., (2.1) 
 1 , 1,n nT X X n= + + ≥  (2.2) 
is called a renewal sequence or renewal process. 
The r.v. , 0nT n ≥  are called renewal times and the r.v. , 1nX n ≥  are called 
interarrival times. 
 
Example 2.1 
1) In the first section, we give an example in reliability theory. 
2) Another important example is queueing theory. Let us consider a queueing 
system composed of a server, a process of customer arrivals, a process of service 
times and a discipline rule of the type “first in, first out” (FIFO), which means 
the first customer present in the system is the first served. 
In many models of queueing theory, the arrival process is assumed to be a 
renewal process. 
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In this case, the r.v. nT  is the arrival time of the nth customer, assuming that a 
customer number 0 is immediately served at time 0, and the r.v. nX  represents 
the interarrival time between the ( 1n − )th and the nth customer.  
3) An arrival process is also considered in risk theory. Let us consider an 
insurance company starting at time 0 with a capital amount u ( )0u ≥  called the 
initial reserve. The customers pay premiums, and the insurance company has to 
pay for the accidents claimed by the customers. In this case, the r.v. nT  represents 
the arrival of the nth claim, assuming that the company just starts at the arrival of 
a claim called claim 0, and the r.v. nX  is the interarrival time between the 
( 1n − )th and the nth claims ( )1n ≥ . 
4) In counter theory, we consider particles arriving at times , 0nT n ≥  with 

0 0T =  so that here too, the r.v. nX  are interpreted in terms of interarrival time 
between two successive particles. 
 
Definition 2.2 With each renewal sequence, we can associate the following 
stochastic process, continuous in time, with values in :  
 ( )( ), 0N t t ≥ , (2.3) 
where 

0( ) 1 ,nN t n T t n> − ⇔ ≤ ∈ . 
This process is called the associated counting process or the renewal counting 
process. 

( )N t  represents the total number of  “renewals” on (0, ]t . 
 
Definition 2.3 The renewal function is defined as 
 ( ) ( ( ))H t E N t=  (2.4) 
provided the expectation is finite. 
 
3 CLASSIFICATION OF RENEWAL PROCESSES 
 
Let us suppose that the random variables are defined on  with distribution 
function F such that, to avoid trivialities: 
 (0) 1F < . (3.1) 
If 
 ( ) 1F +∞ = , (3.2) 
we have the usual case of real random variables. 
From relation (2.2), we get 
 ( ) ( )P ( ) 1 ( ), 1nN t n F t n> − = ≥ , (3.3) 

( )nF  being the n-fold convolution product of F with itself. 
Since, for 1n ≥ : 
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 ( ) ( ) ( )( ) ( ) 1 ( )P N t n P N t n P N t n= = > − − >  , (3.4) 
using relation (3.3), we obtain: 
 ( ) ( ) ( 1)( ) ( ) ( ), 1n nP N t n F t F t n+= = − ≥ . (3.5) 

(0)F is defined as being the Heaviside distribution with a unit mass at the origin, 
i.e., 
 (0)

0F U= ; (3.6) 
the relation (3.5) is still valid for 0n = , since  
 ( )P ( ) 0 1 ( ).N t F t= = −  (3.7) 
Using Stein’s lemma (1946), the following very important result can be proved: 
 
Proposition 3.1 If (0) 1F < , then, for all , ( )t N t  has moments of any order.  
 
In particular, this proposition implies that the renewal function is finite for all 
finite t. Consequently, we can write successively: 

 

( ) [ ]( ) ( 1)

1
(2) (2) (3)

(2) (3)

( ) ( ) ( )

( ) ( ) 2 ( ) 2 ( )
( ) ( ) ( ) ,

n n

n
E N t n F t F t

F t F t F t F t
F t F t F t

∞
+

=

= −

= − + − +

= + + +

∑
  (3.8) 

so that using relation (2.4): 

 ( )

1
( ) ( ).n

n
H t F t

∞

=
= ∑  (3.9) 

In several cases, it is useful to consider the initial renewal and to define at time t 
the random variable '( )N t  as being the total number of renewals on [ ]0,t . 
Clearly, we have, for all 0t ≥ : 
 '( ) ( ) 1,N t N t= +  (3.10) 
and consequently: 
 ( )'( ) ( ) 1E N t H t= + . (3.11) 
Setting 
 ( )( ) '( )R t E N t= , (3.12) 
we get from relations (3.11), (3.9) and (3.6): 

 ( )

0
( ) ( ).n

n
R t F t

∞

=

= ∑  (3.13) 

Of course, we have 
 0( ) ( ) ( )R t U t H t= + . (3.14) 
The classification of a renewal process is based on three concepts: recurrence, 
transience and periodicity. 
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Definition 3.1  
(i) A renewal process ( ), 1nT n ≥  is recurrent if nX < ∞  for all n; otherwise it 
is called transient. 
(ii) A renewal process ( ), 1nT n ≥  is periodic with period δ   if the possible 
values of the random variables , 1nX n ≥  form the denumerable set 
{ }0, ,2 ,δ δ … , and δ  is the largest such number. Otherwise (that is, if there is no 
such strictly positiveδ ), the renewal process is aperiodic. 
A direct consequence of this definition is the characterization of the type of a 
renewal process, with the help of distribution function F. 
 
Proposition 3.2 A renewal process of distribution function F is 
(i) recurrent iff ( ) 1F ∞ = , 
(ii) transient iff ( ) 1F ∞ < , 
(iii) periodic with period ( 0)δ δ >  iff F is constant over intervals 
[ , ( 1) ),n n nδ δ+ ∈ Ν , and all its jumps occur at points ,n nδ ∈ . 
 
If t tends toward +∞ , relation (3.9) gives: 

 
if ( ) 1,

( ) ( ) if ( ) 1.
1 ( )

F
H F F

F

+∞ +∞ =⎧
⎪+∞ = +∞⎨ +∞ <⎪ − +∞⎩

 (3.15) 

Or, equivalently by relation (3.13): 

 
if ( ) 1,

( ) 1 if ( ) 1.
1 ( )

F
R

F
F

+∞ +∞ =⎧
⎪+∞ = ⎨ +∞ <⎪ − +∞⎩

 (3.16) 

This proves the next proposition. 
 
Proposition 3.3 A renewal process of distribution F is recurrent or transient, 
depending on whether ( )H +∞ = +∞  or ( )H +∞ < +∞ . In the last case, we have 

 1( )
1 ( )

R
F

+∞ =
− +∞

 or ( )( ) .
1 ( )

FH
F
+∞

+∞ =
− +∞

 (3.17) 

 
The interest of the classification given above will be clearer with the concept of 
lifetime of a renewal process. 
 
Definition 3.2 The lifetime of a renewal process ( , 1)nT n ≥  is the random 
variable L, possibly defective, defined by: 
 { }sup : .n nL T T= < ∞  (3.18) 
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So, if L = , this means that there is only a finite number of renewals on [0, ).∞  
Also, we define a new random variable N giving the total number of renewals on 
[0, )L . 
 
Definition 3.3 The total number of renewals on (0, ),∞  possibly infinite, is given 
by 
 { }sup ( ), 0 .N N t t= ≥  (3.19) 
In reliability theory, the event { }N k=  would mean that the (k+1)th component 
introduced in the system would have an infinite lifetime! Also the probability 
distribution of N is given by 
 ( )0 1 ( )P N F= = − +∞ , (3.20) 
 ( ) ( )1 ( ) 1 ( ) ,P N F F= = +∞ − +∞  (3.21) 
and in general, for :k ∈  
 ( ) ( ) ( )( ) 1 ( ) .kP N k F F= = +∞ − +∞  (3.22) 
Of course if ( ) 1F +∞ = , we have, a.s., 
 N = +∞ . (3.23) 
In the case of a transient renewal process, we can write, using relation (3.22): 

 ( ) [ ] ( )
1

( ) 1 ( ) .k

k
E N k F F

∞

=

= +∞ − +∞∑  (3.24) 

As the function 1
1 x−

 can be written for 1x <  as a power series: 

 
0

1
1

n

n
x

x

∞

=

=
− ∑ , (3.25) 

which is analytical on ( )1, 1− +  and thus derivable, we have 

 1
2

1

1 .
(1 )

n

n
nx

x

∞
−

=

=
− ∑  (3.26) 

Writing relation (3.24) under the form 

 ( ) ( ) [ ] 1

1
( ) 1 ( ) . ( ) k

k
E N F F k F

∞
−

=

= +∞ − +∞ +∞∑  (3.27) 

we get, using relation (3.26): 

 ( ) ( ) .
1 ( )

FE N
F
+∞

=
− +∞

 (3.28) 

So, it is possible to compute the mean of the total number of renewals very easily 
in the transient case. We can also give the distribution function of L. Indeed, we 
have: 

 ( ) ( )1
0

, .n n
n

P L t P T t X
∞

+
=

≤ = ≤ = +∞∑  (3.29) 
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From the independence of nT and 1nX + , we may deduce that: 

 ( ) ( )( )

1
1 ( ) ( ) 1 ( ) .n

n
P L t F F t F

∞

=

≤ = − +∞ + − +∞∑  (3.30) 

And finally, by equality (3.13): 
 ( ) ( )1 ( ) ( )P L t F R t≤ = − +∞ . (3.31) 
To compute the mean of the lifetime of the process, we use the following trick 
based on the independence of the random variables , 1nX n ≥ ; we can 
successively write: 
 ( ) { }( ) ( ) { }( )1 11 ,T TE L E T I E L E I<∞ <∞= ⋅ + ⋅  (3.32) 

 ( )
0

( )( ) 1 ( )
( )
F tF dt E L F

F

+∞
⎛ ⎞= +∞ − + ⋅ +∞⎜ ⎟+∞⎝ ⎠∫  (3.33) 

so that 

 ( ) ( ) ( )
0

( ) ( ) ( ).E L F F t dt E L F
+∞

= +∞ − + ⋅ +∞∫  (3.34) 

And finally 

 ( ) ( )
0

1 ( ) ( ) .
1 ( )

E L F F t dt
F

+∞

= +∞ −
− +∞ ∫  (3.35) 

So, for a transient renewal process, the lifetime is always a.s. finite and has a 
finite mean given by relation (3.35). 
 
Example 3.1: The Poisson process 
In queueing and risk theory presented in Example 2.1, the classical assumption 
for the arrival process is that it constitutes a renewal process where the r.v. nX  
has as common distribution function: 

 
0 , 0,

( )
1 , 0,x

x
F x

e xλ−

<⎧= ⎨ − ≥⎩
  (3.36) 

with λ  being a fixed positive constant. 
As ( ) 1F +∞ = , the arrival process is recurrent. For (3.3), it is possible to have the 
analytical expression of the successive n-fold convolutions. Indeed, we can 
successively write: 

 ( )(2) ( )
0

( ) 1
t t x xF t e e dxλ λλ − − −= −∫   (3.37) 

              ( )
0

t
x te e dxλ λλ − −= −∫  (3.38) 

              1 t te teλ λλ− −= − −  (3.39) 
              1 (1 ),te tλ λ−= − +  (3.40) 
and in general: 
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1

( )

0

( )( ) 1 .
!

n k
n t

k

tF t e
k

λ λ−
−

=

= − ∑  (3.41) 

Applying result (3.5), we have 

 
( )

1

0 0

( ) ( )P ( ) 1 1
! !

( ) .
!

n nk k
t t

k k
n

t

t tN t n e e
k k

te
n

λ λ

λ

λ λ

λ

−
− −

= =

−

= = − − +

=

∑ ∑
 (3.42) 

That is, for all fixed t, the process ( )( )N t  is a Poisson process of parameter tλ . 
The value of the renewal function H follows from relations (3.9) and (3.8): 

 
1

( )( )
!

n
t

n

tH t ne
n

λ λ∞
−

=

= ∑  (3.43) 

 
1

( )
( 1)!

n
t

n

te
n

λ λ∞
−

=

=
−∑  (3.44) 

 
1

1

( ) ,
( 1)!

n
t

n

te t
n

λ λλ
∞ −

−

=

=
−∑  (3.45) 

or 
 ( ) .H t tλ=  (3.46) 
 
It follows that for a Poisson renewal process, the renewal function is linear. 
As we shall see in section 5, a renewal process may also be characterized by its 
renewal function. The Poisson renewal process is the one which has a linear 
renewal function. 
 
4 THE RENEWAL EQUATION 
 
Coming back to relation (3.9), we get, using the associative property of the 
convolution product: 

 [ ]

(2) (3)

(2)

0

( ) ( ) ( ) ( )
( )

( ) ( ),with ( ) ( ) ( ).
t

H t F t F t F t
F F F F t

F t F H t F H t F t x dH x

= + + +

= + • + +

= + • • = −∫

 (4.1) 

This relation is called the integral equation of renewal theory, or simply the 
renewal equation. It can also be written as follows: 

 
0

( ) ( ) ( ) ( ).
t

H t F t F t x dH x= + −∫  (4.2) 

As: 
 ( ) ( ),F H t H F t• = •  (4.3) 
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we also have: 

 
0

( ) ( ) ( ) ( ).
t

H t F t H t x dF x= + −∫  (4.4) 

In the particular case where the density function f of F exists, the last integral 
equation becomes 

 
0

( ) ( ) ( ) ( ) .
t

H t F t H t x f x dx= + −∫  (4.5) 

In this case, we can apply the dominated convergence to series (3.9), showing the 
existence of the density function of H, say h, such that: 

 [ ]

1
( ) ( ),n

n
h t f t

∞

=

= ∑  (4.6) 

with 
 [ ]1 ( ) ( ),f t f t=  (4.7) 

 [ ]2

0

( ) ( ) ( ) ,
t

f t f t x f x dx= −∫  (4.8) 

   

 [ ] [ ]1

0

( ) ( ) ( ) .
t

n nf t f t x f x dx−= −∫  (4.9) 

From relation (4.5) or (4.6) we obtain the integral equation for h: 
 ( ) ( ) ( ),h t f t f h t= + ⊗  (4.10) 
with 

 
0

( ) ( ) ( ) .
t

f h t f t x h x dx⊗ = −∫  (4.11) 

As: 
 ( ) ( ),f h t h f t⊗ = ⊗  (4.12) 
we also have: 
 ( ) ( ) ( ).h t f t h f t= + ⊗  (4.13) 
In fact, the renewal equation (4.2) is one particular case of the type of integral 
equations: 
 ( ) ( ) ( ),X t G t X F t= + •  (4.14) 
where X is the unknown function, F and G being known measurable functions 
bounded on finite intervals and •  the convolution product. 
Such an integral equation is said to be of renewal type. 
When FG = , we get the renewal equation. The study of these integral equations 
has a long history which includes contributions from Lotka (1940), Feller (1941), 
Smith (1954) and Çinlar (1969). Çinlar gave the two following propositions. 
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Proposition 4.1 (Existence and unicity)   
The integral equation of renewal type (4.14) has one and only one solution, given 
by 
 ( ) ( )X t R G t= • , (4.15) 
R being defined by relation (3.13). 
 
It is also possible to study the asymptotic behaviour of solutions to renewal-type 
equations. The basic result is the so-called “key renewal theorem”, proven by 
W.L. Smith (1954), and which is in fact mathematically equivalent to 
Blackwell’s theorem (1948), given here as Corollary 4.3. 
A proof of the key renewal theorem using Blackwell’s theorem can be found in 
Çinlar (1975b). 
 
Proposition 4.2 (Asymptotic behaviour, Key renewal theorem) 
(i) In the transient case, we have: 
 lim ( ) ( ) ( )

t
X t R G

→∞
= ∞ ∞  (4.16) 

provided the limit 
 ( ) lim ( )

t
G G t∞ =  (4.17) 

exists. 
(ii) In the case of recurrence, we have: 

 
0

1lim ( ) ( ) ,
t

X t G x dx
m

∞

→∞
= ∫  (4.18) 

provided that G is directly Riemann integrable on [0, ),∞  that F is not arithmetic, 
and supposing: 

 ( ) ( )
0

1 ( )nm E X F x dx
∞

= = −∫ . (4.19) 

 
Corollary 4.1 In the case of a recurrent renewal process with finite variance 2σ , 
we have: 

 
2 2

2lim ( )
2t

t mR t
m m

σ
→∞

+⎛ ⎞− =⎜ ⎟
⎝ ⎠

. (4.20) 

: 
Remark 4.1 
1) From result (4.20), we immediately get an analogous result for the renewal 
function H. Indeed, we know, from relation (3.14), that  
 0( ) ( ) ( ), 0.R t H t U t t= + ≥  (4.21) 
Applying result (4.20), we get: 

 
2 2

2lim ( ) 1,
2t

t mH t
m m

σ
→∞

+⎛ ⎞− = −⎜ ⎟
⎝ ⎠

 (4.22) 
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or 

 
2 2

2lim ( ) .
2t

t mH t
m m

σ
→∞

−⎛ ⎞− =⎜ ⎟
⎝ ⎠

 (4.23) 

2) The two results (4.20) and (4.23) are often written under the following forms: 

 
2 2

2( ) O(1)
2

t mR t
m m

σ+
= + + , (4.24) 

 
2 2

2( ) O(1),
2

t mH t
m m

σ −
= + +  (4.25) 

where O(1) represents a function of t approaching zero as t approaches infinity. 
 
Corollary 4.2 In the case of a recurrent renewal process with finite mean m, we 
have: 

 ( ) 1lim .
t

R t
t m→∞

=  (4.26) 

 
Corollary 4.3 (Blackwell’s theorem)  
In the case of a recurrent process with finite mean m, we have, for every positive 
number τ : 

 ( )lim ( ) ( ) .
t

R t R t
m
ττ

→∞
− − =  (4.27) 

 
Remarks 4.2 
1) Probabilistic interpretation of renewal density. 
Let ( )k t dt  represent the probability that there is a renewal in the time 
interval ( , )t t dt+ . It must satisfy the following relation, obtained by a simple 
probabilistic argument using the independence property of the successive 
“lifetimes”: 

 
0

( ) ( ) ( ) ( ) .
t

k t dt f t dt f x k t x dt= + −∫  (4.28) 

From the unicity part of Proposition 4.1, we get, for all 0t ≥ : 
 ( ) ( ).k t h t=  (4.29) 
So, the probability defined above is given by ( )h t dt  and more generally by 

( )dH t  with a precision error of O( )dt . This interpretation often simplifies the 
search for relations useful in renewal theory. 
2) The variance of ( )N t  
From Stein’s lemma, we know that ( )N t  has, for all t, moments of any order. 
Also, let 2 ( )tα  be the centred moment of order 2 of ( )N t : 
 ( )( )2

2 ( ) ( ) .t E N tα =  (4.30) 
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From results (3.5), we can write successively: 

 ( ) ( )2
2 0

1
( ) ( )

k
t k U F F tνα

∞

=
= − •∑  (4.31) 

 2 ( ) 2 ( 1)

1 1
( ) ( )k k

k k
k F t k F t

∞ ∞
+

= =
= −∑ ∑  (4.32) 

 2 ( ) 2 ( )

1 1
( ) ( 1) ( )k

k
k F t F tν

ν
ν

∞ ∞

= =
= − −∑ ∑  (4.33) 

 [ ] ( )2 2

1
( 1) ( )F tν

ν
ν ν

∞

=
= − −∑  (4.34) 

 ( )

1
(2 1) ( )F tν

ν
ν

∞

=
= −∑  (4.35) 

 ( )( )

1 1
2 ( 1) ( ) ( ).F t F tνν

ν ν
ν

∞ ∞

= =
= − +∑ ∑  (4.36) 

Now if we compute (2) ( )H t  by means of the relation: 

 ( ) ( ) ( )2 '

1 ' 1
( ) ( ) ( ) ,H t F t F tν ν

ν ν

∞ ∞

= =

⎛ ⎞ ⎛ ⎞
= •⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  (4.37) 

we easily find: 

 ( ) ( )2

1
( ) ( 1) ( ).H t F tν

ν
ν

∞

=
= −∑  (4.38) 

Using (3.9) and substituting this last result in relation (4.36), we finally obtain: 
 ( )22 ( ) ( ) 2 ( ).t H t H tα = +  (4.39) 
 
This last result shows that 
 ( ) ( ) ( )22Var ( ) ( ) 2 ( ) ( ) .N t H t H t H t= + −  (4.40) 
 
Remark 4.3 
 
The renewal equation (4.4) can be solved, as it will be shown in the previous 
sections, directly in some very special cases or by means of the Laplace or 
Laplace-Stieltjes transforms in other cases.  
In this way the analytical solution of the integral equation (4.4) can be obtained. 
But in the largest part of real life applications the equation that is obtained by the 
model can’t be solved by analytical methods. In these cases it is necessary to use 
a numerical approach to get the solution to the general renewal equation (4.4) in 
a bounded horizon time ( see Janssen and Manca(2006), Chapter 2, section 10) 
 
 
 



 
 
 
 
 
 
Renewal theory and Markov chains                                                                     55 

5 THE USE OF LAPLACE TRANSFORM 
 
5.1 The Laplace Transform 
 
To show the power of the Laplace transform in solving the renewal equation, let 
us suppose that d.f. F characterizing the recurrent renewal process considered has 
f  as density. 

Let us use the following general notation: for any function α  on [0, ), α∞  will 
represent its Laplace transform, provided it exists:  

 ( )( )
0

( ) ( ) , £ ( ) .sxs e x dx xα α α
∞

−= =∫  (5.1) 

With this convention and using the well-known property of the Laplace 
transform 
 ( )£ ( )( ) ( ) ( ),x s sα β α β⊗ = ⋅  (5.2) 
we get from the renewal equation: 
 ( ) ( ) ( ) ( )h s f s h s f s= + ⋅ . (5.3) 
The Laplace transform of the unique solution is thus given by: 

 ( )( ) .
1 ( )

f sh s
f s

=
−

 (5.4) 

Using the inverse Laplace transform, we can then have the value of ( )h t . 
 
Remark 5.1 From the algebraic equation (5.3), we can deduce the expression of 
the density f  as a function of the renewal density h . In Laplace transforms, we 
get: 

 ( )( ) .
1 ( )

h sf s
h s

=
−

 (5.5) 

The inverse Laplace transform gives us a function of h . 
This leads to the important result that every renewal process is characterized by 
its renewal density, if it exists, or by its renewal function. Thus there is a one-to-
one correspondence between the d.f. F  of a renewal function and its renewal 
function H . 
 
5.2 The Laplace-Stieltjes (L-S) Transform 
 
The L-S transform is a bit more general than the Laplace transform. Indeed, for 
any function α  on [0, ), α∞  will represent its L-S transform, provided it exists, 
under the form: 
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 ( )( )
0

( ) ( ) £ ( ) .sxs e d x xα α α
∞

−= =∫  (5.6) 

For a function α  such that 
 lim ( ) 0 ,sx

x
e xα−

→∞
=  (5.7) 

an integration by parts gives the relation between α  and α : 
 ( ) (0) ( ).s s sα α α= − +  (5.8) 
As £  satisfies the following property: 
 ( ) ( ) ( )£ ( )( ) £ ( ) £ ( ) ,x x xα β α β• = ⋅  (5.9) 
we get from the renewal equation (4.4): 
 ( ) ( ) ( ) ( ).H s F s H s F s= + ⋅  (5.10) 
Or: 

 ( )( ) ,
1 ( )

F sH s
F s

=
−

 (5.11) 

which is equivalent to the expression (5.4) if we do not assume the existence of a 
density for F . Of course, if such a density exists, we have from (5.6): 
 ( ) ( ),F s f s=  (5.12) 
 ( ) ( ),H s h s=  (5.13) 
and consequently, the relations (5.11) and (5.4) are identical. 
 
6 APPLICATION OF WALD’S IDENTITY 
 
We already know that  
 ( ) ,nE S nm=  (6.1) 
as 
 0n nS X X= + +  (6.2) 
and 
 ( )( ) ( ).E N t R t=  (6.3) 
Now let us consider the time of the first “replacement” after time t ; it is given 
by '( )N tS . Wald’s lemma (see Chapter 1, relation (6.52)) computes the mean of 
this random variable. 
 
Proposition 6.1 (Wald’s lemma) ( )'( ) ( ).N tE S mR t=  (6.4) 
 
Remark 6.1 As, by (3.10): 
 '( ) ( ) 1 ,N t N t= +  (6.5) 
we can use relation (3.14) to write result (6.4) as: 
 ( ) [ ]( ) 1 ( ) 1 .N tE S m H t+ = +  (6.6) 
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7 ASYMPTOTIC BEHAVIOUR OF THE ( )N t -PROCESS 
 
This section will yield two important results concerning the counting process 
( )( ), 0N t t ≥  associated with a recurrent renewal process characterized by the 
d.f. F . 
 
Proposition 7.1 (Strong law of large numbers) If ∞<m , then, almost surely: 

 ( ) 1lim .
t

N t
t m→∞

=  (7.1) 

  
Proposition 7.2 (Central limit theorem) If 2σ < ∞ , then for all y ∈ : 

 
2

3

( )
lim ( ) ,
t

tN t mP y y
t
mσ→∞

⎛ ⎞−⎜ ⎟≤ = Φ
⎜ ⎟⎜ ⎟
⎝ ⎠

 (7.2) 

where Φ  represents the standard normal d.f.. 
 
Remark 7.1 From Proposition 7.2, we have the following approximation for 
large t : 

 
2

3var( ( )) ~ ,N t t
m
σ  (7.3) 

which simplifies the exact result (4.40). 
 
8 DELAYED AND STATIONARY RENEWAL 
PROCESSES 
 
The notion of stationary renewal process is a particular case of a delayed 
renewal process. A delayed renewal process is a renewal process with the 
difference that the first r.v. 1,X  though still independent of the others, does not 
have the same distribution. 
More precisely, let ( ), 1nX n ≥  be a sequence of non-negative independent 
variables, G  being the d.f. of 1X  and F the d.f. of all other r.v. 
The corresponding sequence ( ), 0nT n ≥ , where 
 0 0T = a.s., (8.1) 
 1 ,n nT X X= + +  (8.2) 
is called a delayed renewal sequence or delayed renewal process. 
Clearly the basic definition of the “classical” renewal processes can be extended 
to the case of a delayed renewal process. For example if ( )dH t  represents the 
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renewal function for a delayed renewal process, and if we pose the condition 
1 ,X x=  then we have: 

 ( )1
0 , ,

|
1 ( ) , ,d

x t
H t X x

H t x x t
>⎧= = ⎨ + − ≤⎩

 (8.3) 

where H represents the renewal function associated with the d.f. .F  Since, by 
definition: 
 ( ) ( )1 1| ( )dH t X E N t X= , (8.4) 
we get: 
 ( ) ( )( )1( ) ,dE N t E H t X=  (8.5) 

 [ ]
0

1 ( ) ( ).
t

H t x dG x= + −∫  (8.6) 

Or: 
 ( ) ( ).dH G t H G t= + •  (8.7) 
So, knowing renewal function ,H  we are just a convolution product away from 
knowing dH . 
This notion of delayed renewal process is introduced because it has been 
remarked that if one begins to observe a renewal process which has been running 
for a long time, the first variable 1X  observed has the d.f. 

 [ ]
0

1( ) 1 ( ) , 0.
x

G x F u du x
m

= − ≥∫  (8.8) 

If we consider a delayed renewal process with the d.f. defined by relation (8.8) 
for G the d.f. of 1,X it called a stationary renewal process. 
 
9 MARKOV CHAINS 
 
This section presents briefly some fundamental results concerning the theory of 
Markov chains with a finite number of states. These results will be used in the 
following chapter. We will use the usual terminology introduced by Chung 
(1960) and Parzen (1962). 
 
9.1 Definitions 
 
Let us consider an economic or physical system S  with m  possible states, 
represented by the set I : 
 { }1, 2, ,I m= … . (9.1) 
Let the system S  evolve randomly in discrete time ( )0, 1, 2, , , ,t n= … …  and 
let nJ  be the r.v. representing the state of the system S  at time n . 
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Definition 9.1 The random sequence ( ),nJ n ∈ Ν  is a Markov chain iff for all 

0 1, , , :nj j j I∈…  
 ( ) ( )0 0 1 1 1 1 1 1| , , , |n n n n n n n nP J j J j J j J j P J j J j− − − −= = = = = = =… (9.2) 
(provided this probability has meaning). 
 
Definition 9.2 A Markov chain ( ), 0nJ n ≥  is homogeneous iff the 
probabilities (1.2) do not depend on n  and is non-homogeneous in the other 
cases. 
 
For the moment, we will only consider the homogeneous case for which we 
write: 
 ( )1| ,n n ijP J j J i p−= = =  (9.3) 
and we introduce the matrix P defined as: 
 [ ]ijp=P . (9.4) 
The elements of the matrix P have the following properties: 
(i)  0,ijp ≥ for all , ,i j I∈   (9.5) 

(ii) 1,ij
j I

p
∈

=∑  for all  .i I∈   (9.6) 

A matrix P satisfying these two conditions is called a Markov matrix or a 
transition matrix. 
To every transition matrix, we can associate a transition graph where vertices 
represent states. There exists an arc between vertices i and j iff 0.ijp >  
To fully define the evolution of a Markov chain, it is also necessary to fix an 
initial distribution for state 0J , i.e. a vector  
 ( )1, , ,mp p=p …  (9.7) 
such that: 
 0, ,ip i I≥ ∈  (9.8) 
 1.i

i I
p

∈

=∑  (9.9) 

For all , ii p  represents the initial probability of starting from i : 
 ( )0 .ip P J i= =  (9.10) 
For the rest of this chapter we will consider homogeneous Markov chains as 
being characterized by the couple ( ),p P . 
If nJ i=  a.s., that is if the system starts with probability equal to 1 from state i , 
then the components of vector p will be: 
 j ijp δ= . (9.11) 
We now introduce the transition probabilities of order ( )n

ijp , defined as: 
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 ( )( ) |n
ij np P J j J iν ν+= = = . (9.12) 

From the Markov property (9.2), it is clear that conditioning with respect to 1Jν + , 
we get 
 (2) .ij ik kj

k
p p p= ∑  (9.13) 

Using the following matrix notation: 
 [ ](2) (2)

ijp=P , (9.14) 
we find that relation (9.13) is equivalent to 
 (2) 2=P P . (9.15) 
Using induction, it is easy to prove that if 
 [ ]( ) ( )n n

ijp=P , (9.16) 
then we obtain for all 1n ≥ : 
 ( )n n=P P . (9.17) 
Note that (9.17) implies that the transition probability matrix in n  steps is equal 
to the nth power of the matrix P. 
For the marginal distributions related to ,nJ  we define for i I∈  and 0n ≥ : 
 ( )( ) .i np n P J i= =  (9.18) 
These probabilities may be computed as follows: 
 ( )( ) ,n

i j ji
j

p n p p i I= ∈∑ . (9.19) 

If we write: 
 (0)

ji jip δ=  or (0) =P I , (9.20) 
then relation (9.19) is true for all 0n ≥ . 
If: 
 ( )1( ) ( ), , ( ) ,mn p n p n=p …  (9.21) 
then relation (9.19) can be expressed, using matrix notation, as: 
 ( ) .nn =p pP  (9.22) 
 
Definition 9.3 A Markov matrix P is regular if there exists a positive integer k , 
such that all the elements of the matrix ( )kP  are strictly positive. 
 
From relation (9.17), P is regular iff there exists an integer 0k >  such that all the 
elements of the kth power of P are strictly positive. 
 
Example 9.1 (i) If: 

 
.5 .5
1 0

⎡ ⎤= ⎢ ⎥⎣ ⎦
P  (9.23) 

we have: 
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 2 .75 .25
.5 .5

⎡ ⎤= ⎢ ⎥⎣ ⎦
P  (9.24) 

so that P is regular. 
The transition graph associated to P is given in Figure 9.1.  

Figure 9.1 
(ii) If: 

 
1 0

.75 .25
⎡ ⎤= ⎢ ⎥⎣ ⎦

P , (9.25) 

P is not regular, because for any integer k , 
 ( )

12 0.kp =  (9.26) 
 
 
 

 
Figure 9.2 

 
The transition graph in this case is depicted in Figure 9.2. 
The same is true for the matrix: 
 

  
0 1
1 0

⎡ ⎤= ⎢ ⎥⎣ ⎦
P . (9.27) 

 (iii) Any matrix P whose elements are all strictly positive is regular. 
For example: 

 

1 2 .7 .2 .1
3 3 .6 .2 .2
1 3

.4 .1 .54 4

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

. (9.28) 
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9.2. Markov Chain State Classification 
 
Let i I∈ , and let ( )d i  be the greatest common divisor of the set of integers n , 
such that  
 ( ) 0.n

iip >  (9.29) 
 
Definition 9.4 If ( ) 1d i > , the state i  is said to be periodic with period ( )d i . If 

( ) 1d i = , then state i  is aperiodic. 
 
Clearly, if 0iip > , then i  is aperiodic. However, the converse is not necessarily 
true. 
 
Remark 9.1  If P is regular, then all the states are aperiodic. 
 
Definition 9.5 A Markov chain whose states are all aperiodic is called an 
aperiodic Markov chain. 
 
From now on, we will have only Markov chains of this type. 
 
Definition 9.6 A state i  is said to lead to state j  (written i j ) iff there exists a 
positive integer n  such that 
 0.n

ijp >  (9.30) 
i jC  means that i does not lead to j. 
 
Definition 9.7 States i  and j  are said to communicate iff i j  and j i , or if 
j i= . We write i j . 

 
Definition 9.8 A state i  is said to be essential iff it communicates with every 
state it leads to; otherwise it is called inessential. 
 
The relation  defines an equivalence relation over the state space I  resulting 
in a partition of I . The equivalence class containing state i  is represented by 

( )C i . 
 
Definition 9.9 A Markov chain is said to be irreducible iff there exists only one 
equivalence class. 
 
Clearly, if P is regular, the Markov chain is both irreducible and aperiodic. Such 
a Markov chain is said to be ergodic. 
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It is easy to show that if the state i  is essential (inessential) then all the elements 
of the class ( )C i  are essential (inessential) (see Chung (1960)). 
We can thus speak of essential and inessential classes. 
 
Definition 9.10 A subset E  of the state space I  is said to be closed iff: 
 1ij

j E
p

∈

=∑ , for all i E∈ . (9.31) 

 
It can be shown that every essential class is minimally closed. See Chung (1960). 
 
Definition 9.11 For given states i  and j , with 0 ,J i=  we can define the r.v. ijτ  
called the first passage time to state j as follows: 

 
if , 0 , ,
if ,  for all 0.

n
ij

n J j n J j
J j

ν

ν

ν
τ

ν
≠ < < =⎧= ⎨∞ ≠ >⎩

 (9.32) 

 
ijτ  is said to be the hitting time of the singleton { }j , starting from state i  at time 

0. 
Supposing: 
 ( )( )

0 0| ,n
ij ijf P n J i nτ= = = ∈  (9.33) 

and 
 ( )0| ,ij ijf P J iτ= < ∞ =  (9.34) 
one can see that for 0n > : 
 ( )( )

0, , 0 | ,n
ij nf P J j J j n J iν ν= = ≠ < < =  (9.35) 

 
1

, ,

1

' 0
,

k k
n i j

n

S k
pα α +

−

=

= ∑ ∏  (9.36) 

where the summation set , ,'n i jS is defined as: 
( ){ }, , 0 1 0' , , , : , , , , 1, , 1 .n i j n n k kS i j I j k nα α α α α α α= = = ∈ ≠ = −… …  (9.37) 

We also have: 

 ( )

1
,n

ij ij
n

f f
∞

=

= ∑  (9.38) 

 ( )01 | .ij ijf P J iτ− = = ∞ =  (9.39) 
The elements ( )n

ijf  can readily be computed by induction, using the following 
relations: 
 (1) ,ij ijp f=  (9.40) 

 
1

( ) ( ) ( ) ( )

1
, 2

n
n n n

ij ij jj ijp f p f nν ν

ν

−
−

=
= + ≥∑ . (9.41) 

Let: 
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 ( )0| ,ij ijm E J iτ= =  (9.42) 
with the possibility of an infinite mean. The value of ijm  is given by: 

 ( )( )

1
1 .n

ij ij ij
n

m nf f
∞

=
= − ∞ −∑ (*) (9.43) 

If i j= , then ijm  is called the first passage time mean or the mean recurrence 
time of state i .  
For every j , we define the sequence of successive return times to state 

( )( ) ,j
nj r n a≥  as follows: 

 ( )
0 0jr = , (9.44) 

 { }( ) ( )( )
0, 1 1sup , , , 0.j jj

n n n
k

r k k r J j r k nν ν− −= ∈ Ν > ≠ < < >  (9.45) 

Using the Markov property and supposing 0 ,J j= the sequence of return times to 
state j  is a renewal sequence with the r.v. 
 ( )( )

1 , 1jj
n nr r n−− ≥  (9.46) 

distributed according to jjτ . 
If 0 , ,J i i j= ≠  then ( )( ) , 0j

nr n ≥  is a general renewal sequence. In this case: 
 ( )

1 ,j
ijr τ=  (9.47) 

and 
 ( )( )

1 ~ , 1.jj
n n jjr r nτ−− >  (9.48) 

This shows that a Markov chain contains many embedded renewal processes. 
These processes are used to define the next classification of states. 
 
Definition 9.12 A state i  is said to be transient (recurrent) if the renewal 
process associated with its successive return times to i is transient (recurrent). 
 
A direct consequence of this definition is that: 
 transient 1,iii f⇔ <  (9.49) 
 recurrent 1.iii f⇔ =  (9.50) 
A recurrent state i  is said to be null (positive) if ( )ii iim m= ∞ < ∞ . It can be 
shown that if iim < ∞ , then we can only have positive recurrent states. 
This classification leads to the decomposition theorem (see Chung (1960)). 
 

                                                 
(*) Using the following conventions:  

, , , ( 0)a a a a∞ + = ∞ ∈ ∞ ⋅ = ∞ > , and in this particular case, 0 0∞ ⋅ = . 
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Proposition 9.1 (Decomposition theorem) The state space I of any Markov chain 
can be decomposed into ( 1)r r ≥  subsets 1, , rC C…  forming a partition, such 
that each subset iC  is one and only one of the following types: 
(i)  an essential recurrent positive closed set, 
(ii) an inessential transient non-closed set. 
 
Remark 9.2 
(1) If an inessential class reduces to a singleton { }i , there are two possibilities: 
a) There exists a positive integer N such that: 
 0 1N

iip< < . (9.51) 
b) The N  in a) does not exist. In this case, the state i  is said to be a non-return 
state. 
(2) If the singleton { }i  forms an essential class, then  
 1iip =  (9.52) 
and the state i  is said to be an absorbing state. 
(3) If m = ∞ , there may be two other types of class in the decomposition 
theorems: 
a)  essential transient closed, 
b) essential recurrent non-closed classes. 
 
The literature on Markov chains gives the following necessary and sufficient 
conditions for recurrence and transience. 
 
Proposition 9.2 
(i) State i is transient iff 

 ( )

1
.n

ii
n

p
∞

=

< ∞∑  (9.53) 

In this case, for all :k I∈  

 ( )

1
,n

ki
n

p
∞

=

< ∞∑  (9.54) 

and in particular: 
 ( )lim 0, .n

kin
p k I

→∞
= ∀ ∈  (9.55) 

(ii)  State i is recurrent iff 

 ( )

1
.n

ii
n

p
∞

=
= ∞∑  (9.56) 

In this case:  

 ( )

1
,n

ki
n

k i p
∞

=

⇒ = ∞∑  (9.57) 

and 
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 ( )

1
0.n

ki
n

k i p
∞

=

⇒ =∑C  (9.58) 

 
9.3 Occupation Times  
 
For any state ,j  and for 0n ∈ , we define the r.v. ( )jN n  as the number of times 
the state j  is occupied in the first n  transitions: 
 { }{ }( ) # 1, , : .j kN n k n J j= ∈ =…  (9.59) 
By definition, the r.v. ( )jN n  is called the occupation time of state j in the first n  
transitions. 
The r.v. 
 ( ) lim ( )j jn

N N n
→∞

∞ =   (9.60) 

is called the total occupation time of state j.  
For any state j  and 0n ∈  let us define: 

 
1 if ,

( )
0 if .

n
j

n

J j
Z n

J j
=⎧= ⎨ ≠⎩

 (9.61) 

We may write: 

 
1

( ) ( ).
n

j jN n Z
ν

ν
=

= ∑  (9.62) 

We have from relation (9.34): 
 ( )0P ( ) 0 | .j ijN J i f∞ > = =  (9.63) 
Let ijg  be the conditional probability of an infinite number of visits to the state 
j , starting with 0J i= ; that is: 

 ( )0( ) | .ij jg P N J i= ∞ = ∞ =  (9.64) 
It can be shown that: 
 ( )lim n

ii iin
g f

→∞
= , (9.65) 

 ij ij jjg f g= ⋅ , (9.66) 
 1 1ii iig f i= ⇔ = ⇔  is recurrent, (9.67) 
 0 1ii iig f i= ⇔ < ⇔  is transient. (9.68) 
Results (9.67) and (9.68) can be interpreted as showing that the system S  will 
visit a recurrent state an infinite number of times, and that it will visit a transient 
state a finite number of times. 
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(i)    If i is recurrent and if ( ),j C i∈  then 1.ijf =  
(ii)   If i is recurrent and if ( ),j C i∉  then 0ijf = . 
 
Proposition 9.4 Let T be the set of all transient states of I, and let C be a 
recurrent class. 
For all ,j k C∈ ,  
 .ij ikf f=  (9.69) 
Labeling this common value as iCf , the probabilities ( ), ,i Cf i T∈  satisfy the 
linear system: 
 , , , .i C ik k C ik

k T k C
f p f p i T

∈ ∈

= + ∈∑ ∑  (9.70) 
 
Remark 9.3 Parzen (1962) proved that under the assumption of Proposition 9.4, 
the linear system (9.70) has a unique solution. This shows, in particular, that if 
there is only one irreducible class C , then for all i T∈ : 
 , 1i Cf = . (9.71) 
 
Definition 9.13 The probability ,i Cf  introduced in Proposition 9.4 is called 
absorption probability in class C, starting from state i. 
 
If class C  is recurrent: 

 ,
1 if ,
0 if  is recurrent,  .i C

i C
f

i i C
∈⎧= ⎨ ∉⎩

 (9.72) 

 
9.5 Asymptotic Behaviour 
 
Consider an irreducible aperiodic Markov chain which is positive recurrent. 
Suppose that the following limit exists: 
 lim ( ) ,j jn

p n j Iπ
→∞

= ∈  (9.73) 

starting with 0J i= . 
The relation 
 ( 1) ( )j k kj

k I
p n p n p

∈

+ = ∑  (9.74) 

becomes: 
 ( )( 1) ,nn

ij kjik
k I

p p p+

∈

= ∑  (9.75) 

because 
 ( )( ) .n

j ijp n p=  (9.76) 
Since the state space I  is finite, we obtain from (9.73) and (9.75): 

9.4 Computation Of Absorption Probabilities 
 
Proposition 9.3 
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 j k kj
k I

pπ π
∈

= ∑ , (9.77) 

and from (9.76): 
 1i

i I
π

∈

=∑ . (9.78) 

The result: 
 ( )lim n

ij jn
p π

→∞
=  (9.79) 

is called an ergodic result, since the value of the limit in (9.79) is independent of 
the initial state i . 
From result (9.79) and (9.19), we see that for any initial distribution p: 
 ( )lim ( ) lim ,n

i j jin n j
p n p p

→∞ →∞
= ∑  (9.80) 

 j i
j

p π= ∑ , (9.81) 

so that: 
 lim ( )i in

p n π
→∞

= . (9.82) 

This shows that the asymptotic behaviour of a Markov chain is given by the 
existence (or non-existence) of the limit of the matrix nP . 
A standard result concerning the asymptotic behaviour of nP  is given in the next 
proposition. The proof can be found in Chung (1960), Parzen (1962) or Feller 
(1957). 
 
Proposition 9.5 For any aperiodic Markov chain of transition matrix P and 
having a finite number of states, we have: 
a) if state  j  is recurrent (necessarily positive), then 

(i)    ( ) 1( ) lim ,n
ijn jj

i C j p
m→∞

∈ ⇒ =    (9.83) 

(ii)   i recurrent and ( )( ) lim 0,n
ijn

C j p
→∞

∉ ⇒ =  (9.84) 

(iii)  i transient , ( )( )lim .i C jn
ijn jj

f
p

m→∞
=   (9.85) 

b) If j is transient, then for all :i I∈  
 ( )lim 0.n

ijn
p

→∞
=  (9.86) 

 
Remark 9.4 
Result (ii) of part a) is trivial since in this case: 

( ) 0n
ijp =  for all positive n. 

 
From Proposition 9.5, the following corollaries can be deduced. 
 



 
 
 
 
 
 
Renewal theory and Markov chains                                                                     69 

Corollary 9.1 (Irreducible case) If the Markov chain of transition matrix P is 
irreducible, then for all ,i j I∈ : 
 ( )lim ,n

ij jn
p π

→∞
=  (9.87) 

with 

 1
j

jjm
π = . (9.88) 

It follows that for all j : 
 0jπ > . (9.89) 
If we use Remark 9.3 in the particular case where we have only one recurrent 
class and where the states are transient (the so-called uni-reducible case), then we 
have the following corollary: 
 
Corollary 9.2 (Uni-reducible case) If the Markov chain of transition matrix P 
has one essential class C (necessarily recurrent positive) and T as transient set, 
then we have: 
(i) for all , :i j C∈ ( )lim ,n

ij jn
p π

→∞
=   (9.90) 

with { },j j Cπ ∈  being the unique solution of the system: 
 ,j i ij

i C
pπ π

∈

= ∑  (9.91) 

 1j
j C

π
∈

=∑ . (9.92) 

(ii)  For all j T∈ : 
 ( )lim 0 for all n

ijn
p i I

→∞
= ∈ . (9.93) 

(iii) For all :j C∈  
 ( )lim  for all .n

ij jn
p i Tπ

→∞
= ∈  (9.94) 

 
Remark 9.5 Relations (9.91) and (9.92) are true because the set C  of recurrent 
states can be seen as a Markov sub-chain of the initial chain. 
If the  transient states belong to the set { }1, ,… , using a permutation of the set 
I , if necessary, then the matrix P takes the following form: 
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11 12

22

1 1
1

1

m

m

+

⎡ ⎤
⎢ ⎥
⎢ ⎥

=⎢ ⎥
⎢ ⎥+ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

P P
P

O P

. (9.95) 

 
This proves that the sub-matrix 22P  is itself a Markov transition matrix. 
Let us now consider a Markov chain of matrix P. The general case is given by a 
partition of I: 
 1 ,rI T C C= ∪ ∪ ∪   (9.96) 
where T  is the set of transient states and 1, , rC C…  the r  positive recurrent 
classes. 
By reorganizing the order of the elements of I , we can always suppose that 
 { }1, ,T = … , (9.97) 
 { }1 11, ,C ν= + +… , (9.98) 
 { }2 1 1 21, ,C ν ν ν= + + + +… , (9.99) 

  

 
1

1
1, , ,

r

r j
j

C mν
−

=

⎧ ⎫
= + +⎨ ⎬

⎩ ⎭
∑ …  (9.100) 

where jν  is the number of elements in ( ), 1, ,jC j r= …  and  

 
1

.
r

j
j

mν
=

+ =∑  (9.101) 

This results from the following block partition of matrix P: 

 

1 2

1 1

2 2

r

r r

ν ν ν

ν ν

ν ν

ν ν

× × × ×

×

×

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

P P P P
0 P 0 0
0 0 P 0P

0 0 0 P

 (9.102) 

where, for 1, ,j r= … : 

×P  is the transition sub-matrix for T , 

jν×P  is the transition sub-matrix from T  to jC , 

j jν ν×P  is the transition sub-matrix for the class jC . 
From Proposition 9.1, we have the following corollary: 
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Corollary 9.3 For a general Markov chain of matrix P, given by (9.102), we 
have: 
(i)   For all i I∈  and all j T∈ : ( )lim 0.n

ijn
p

→∞
=  (9.103) 

(ii)  For all ( )1, , :j C rν ν∈ = …    

 ( )
'

,

if ,
lim 0 if ' ,

if .

j
n

ijn

i C j

i C
p i C

f i T
ν

ν

ν
ν

π
ν ν

π
→∞

∈⎧
⎪= ∈ ≠⎨
⎪ ∈⎩

 (9.104) 

Moreover, for all   1, , rν = … : 
 1.j

j Cν

νπ
∈

=∑  (9.105) 

 
This last result allows us to calculate the limit values quite simply. 
For ( ), , 1, ,j j C rν

νπ ν∈ = … , it suffices to solve the linear systems for each  
fixed ν : 

 
, ,

1.

j k kj
k C

i
i C

p j C
ν

ν

ν ν
ν

ν

π π

π
∈

∈

= ∈⎧
⎪
⎨

=⎪
⎩

∑
∑

 (9.106) 

Indeed, since each Cν  is itself a space set of an irreducible Markov chain of 
matrix ν ν×P , the above relations are none other than (9.77) and (9.78). 
For the absorption probabilities ( ), , , 1, ,i Cf i T r

ν
ν∈ = … , it suffices to solve 

the following linear system for each fixed ν . Using Proposition 9.4, we have: 
 , , , .i C ik i C ik

k T k C
f p f p i T

ν ν

ν∈ ∈

= + ∈∑ ∑  (9.107) 

An algorithm, given in De Dominicis, Manca (1984b) very useful for the 
classification of the states of a Markov chain, is fully developed in Janssen and 
Manca (2006), section 8. 
 
9.6 Examples 
 
Markov chains appear in many practical problems in such fields as operations 
research, business, social sciences, etc. 
To give an idea of this potential, we will present some simple examples followed 
by a fully developed case study in the domain of social insurance. 
 
 (i)  A transportation problem. (Anton & Kolman (1978)). 
Let us consider a taxicab company of a city V , subdivided into three sectors 

1 2,V V  and 3V . 



 
 
 
 
 
 
72                                                                                                                Chapter 2 

A taxicab picks up a passenger in any sector and drops her or him off in any 
sector. 
We can view a taxicab as a physical system S  which can be in one of three 
states: the sectors 1 2,V V  or 3V . 
The observation of taxicabs leads to the construction of a Markov chain with 
three states. 
This Markov chain might have the following matrix P, for example: 

 
0.5 0.4 0.1
0.3 0.6 0.1 .
0.2 0.1 0.7

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

P   (9.108) 

This matrix is regular, hence irreducible and aperiodic since all its elements are 
strictly positive. 
 
(ii) A management problem in an insurance company 
A car insurance company classifies its customers in three groups: 

0G : Those having no accidents during the year, 

1G : Those having one accident during the year, 

2G : Those having more than one accident during the year. 
The statistics department of the company observes that the annual transition 
between the three groups can be represented by a Markov chain with state space 
{ }0 1 2, ,G G G  and transition matrix P: 

 
.85 .10 .05
0 .80 .20
0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

P . (9.109) 

We suppose that the company produces 50,000 new contracts per year and wants 
to know the distribution of these contracts for the next four years. 
After one year, one has, on average: 
in group 0 : 50,000 .85 42,500G × = , 
in group 1 : 50,000 .10 5,000G × = , 
in group 2 : 50,000 .05 2,500G × = . 
These results are simply the elements of the first row of P, multiplied by 50,000. 
After two years, multiplying the elements of the first row of )2(P  by 50,000, we 
get 
in group 0 : 36,125G , 
in group 1 : 8,250G , 
in group 2 : 5,625G . 
A similar computation gives: 
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 After three years After four years 
0G          30,706        26,100 

1G          10,213         11,241 

3G            9,081        12,659 
 
To find the type of the Markov chain with transition matrix (9.109), the simple 
graph of possible transitions given in Figure 9.3 shows that the class { }1, 2  is 
transient and class { }3  is absorbing. Thus, using Corollary 9.2 we obtain the 
limit matrix 

 
0 0 1
0 0 1
0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A . (9.110) 

The limit matrix can be interpreted as showing that regardless of the initial 
composition of the group; the customers will finish by having at least two 
accidents. 
 

 
Figure 9.3 

Remark 9.6 If one wants to know the situation after one or two changes, one can 
use relation (1.19) with 1,2,3n =  and with p given by: 
 (.26,.60,.14)=p . (9.111) 
One obtains the following results: 
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(1) (1) (1)
1 2 3
(2) (2) (2)
1 2 3
(3) (3) (3)
1 2 3

.257 .597 .146
.255 .594 .151
.254 .590 .156.

p p p
p p p
p p p

= = =
= = =
= = =

 

These results show that the convergence of ( )np  to π  is relatively fast. 
 
9.7 A Case Study In Social Insurance (Janssen (1966)) 
 
To compute insurance or pension premiums for professional diseases such as 
silicosis, we need to compute the average (mean) degree of disability at pre-
assigned time periods. Let us suppose we retain m  degrees of disability: 

1, , mS S… , the last being 100% and including the pension paid out at death. 
Let us suppose, as Yntema (1962) did, that an insurance policy holder can go 
from degree iS  to degree jS  with a probability ijp . This strong assumption leads 
to the construction of a Markov chain model in which the m m×  matrix: 
 [ ]ijp=P  (9.112) 
is the transition matrix related to the degree of disability. 
For individuals starting at time 0 with iS  as the degree of disability, the mean 
degree of disability after the nth transition is: 

 ( )

1
( ) .

m
n

i ij j
j

S n p S
=

= ∑  (9.113) 

To study the financial equilibrium of the funds, we must compute the limiting 
value of ( )iS n : 
 lim ( )i in

S S n
→∞

= , (9.114) 

or 

 ( )

1
lim .

m
n

i ij jn j
S p S

→∞
=

= ∑  (9.115) 

This value can be found by applying Corollary 9.3 for 1, ,i m= … . 
 
Numerical example 
Using real-life data for silicosis, Yntema (1962) began with the following 
intermediate degrees of disability: 
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1

2

3

4

5

10%
30%
50%
70%

100%

S
S
S
S
S

=
=
=
=
=

  

Using real observations recorded in the Netherlands, he considered the following 
transition matrix P: 

 

.90 .10 0 0 0
0 .95 .05 0 0
0 0 .90 .05 .05
0 0 0 .90 .10
0 0 .05 .05 .90

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

P ; (9.116) 

the transition graph associated with the matrix (9.116) is given in Figure 9.4: 
This immediately shows that: 
(i)     all states are aperiodic, 
(ii)    the set { }3 4 5, ,S S S  is an essential class (positive recurrent),  
(iii)   the singleton { }1  and { }2  are two inessential transient classes. 
Hence a uni-reducible Markov chain can be associated with matrix P. We can 
thus apply Corollary 9.2. It follows from relation (9.116) that: 

 
5

3
limi j jn j

S Sπ
→∞

=
= ∑ , (9.117) 

where ( )3 4 5, ,π π π  is the unique solution of the linear system: 

 

3 3 4 5

5 3 4 5

4 3 4 5

3 4 5

.9 0 .05 ,
.05 .9 .05 ,
.05 .05 .9 ,

1 .

π π π π
π π π π
π π π π

π π π

= ⋅ + ⋅ + ⋅
= ⋅ + ⋅ + ⋅
= ⋅ + ⋅ + ⋅
= + +

 (9.118) 

The solution is: 

 3 4 5
2 3 4, ,
9 9 9

π π π= = = . (9.119) 

Therefore: 
 

 2 3 450 70 100 %
9 9 9iS ⎛ ⎞= + +⎜ ⎟

⎝ ⎠
 (9.120) 

or 
 79%iS =  (9.121) 
which is the result obtained by Yntema. 
 



 
 
 
 
 
 
76                                                                                                                Chapter 2 

 
Figure 9.4 

 
The last result proves that the mean degree of disability is, at the limit, 
independent of the initial state i. 
 
 



 

Chapter 3 
 
MARKOV RENEWAL PROCESSES, SEMI-
MARKOV PROCESSES AND MARKOV 
RANDOM WALKS 
 
In this chapter, the reader will find the main definitions and results on Markov 
renewal processes, semi-Markov processes and Markov random walks useful for 
understanding of the main applications in finance, insurance and reliability 
developed in the next chapters. A full presentation including the proofs of the 
theorems recalled here can be found in Janssen-Manca (2006) (chapter 4 to 
chapter 6). 
 
1 POSITIVE (J-X) PROCESSES 
 
Let us consider a physical or economic system called S with m possible states, m 
being a finite natural number. 
For simplicity, we will note by I the set of all possible states: 
 { }1,...,I m=  (1.1) 
as we already did in Chapter 2 partially devoted to Markov chains. 
At time 0, the system S starts from an initial state represented by the r.v. J0, stays 
a non-negative random length of time X1 in this state, and then goes into another 
state J1 for a non-negative length of time X2 before going into J2, and so on. 
So we have a two-dimensional stochastic process in discrete time called a 
positive (J-X) process: 
 ( ) (( , ), 0)n nJ X J X n− = ≥   (1.2) 
supposing  
 0 0, . .X a s=  (1.3) 
where the sequence ( , 0)nJ n ≥  gives the successive states of S in time and the 
sequence ( , 0)nX n ≥  gives the successive sojourn times. 
More precisely, Xn is the time spent by S in state Jn-1 (n>0).  
Times at which transitions occur are given by the sequence ( , 0)nT n ≥  where: 

 0 1 1
1

0, ,...,
n

n r
r

T T X T X
=

= = =∑   (1.4) 

and so 
 1, 1n n nX T T n−= − ≥ .  (1.5) 
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2 SEMI-MARKOV AND EXTENDED SEMI-MARKOV 
CHAINS 
 
On the complete probability space ( , , )PΩ ℑ , the stochastic dynamic evolution of 
the considered (J-X) process will be determined by the following assumptions: 
P(X0=0)=1, a.s., 

 P(J0=i)=pi, i=1,…,m with 
1

1
m

i
i

p
=

=∑ , (2.1) 

for all n>0, j=1,…,m, we have: 
 

1
( , ( , ), 0,..., 1) ( ), . .

nn n k k J jP J j X x J X k n Q x a s
−

= ≤ = − =   (2.2) 

where any function Qij (i,j=1,…,m) is a non-decreasing real function null on +  
such that if 
 lim ( ),  ,ij ijx

p Q x i j I
→+∞

= ∈ ,  (2.3) 

then: 

 
1

1,  
m

ij
j

p i I
=

= ∈∑ .  (2.4) 

With matrix notation, we will write: 
 1,  ( ( )),  ,..., )ij ij mQ p (p p⎡ ⎤ ⎡ ⎤= = = ∞ =⎣ ⎦ ⎣ ⎦Q P Q p .  (2.5) 

This leads to the following definitions. 
 
Definition 2.1 Every matrix m m× Q of non-decreasing functions null on +  
satisfying properties (2.3) and (2.4) is called a semi-Markov matrix or a semi-
Markov kernel. 
 
Definition 2.2 Every couple (p,Q) where Q is a semi-Markov kernel and p a 
vector of initial probabilities defines a positive (J,X) process  
(J,X) =((Jn,Xn), 0≥n ) with I +×   
as state space, also called a semi-Markov chain ( in short a SMC). 
Sometimes, it is useful that the random variables , 0nX n ≥  take their values in 

instead of + , in which case we need the next two definitions. 
 
Definition 2.3 Every matrix m m×  Q of non-decreasing functions satisfying 
properties (2.3) and (2.4) is called an extended semi-Markov matrix or an 
extended semi-Markov kernel. 
 
Definition 2.4 Every couple (p,Q) where Q is an extended semi-Markov kernel 
and p a vector of initial probabilities defines a (J,X) process (J,X) =((Jn,Xn), 
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0n ≥ ) with I ×  as state space, also called an extended semi-Markov chain (in 
short an ESMC). 
 
Let us come back to the main condition (2.2); its meaning is clear. For example 
let us suppose that we observe for a certain fixed n that Jn-1=i, then the basic 
relation (2.2) gives us the value of the following conditional probability: 
 1( , ( , ), 0,..., 1, ) ( ).n n k k n ijP J j X x J X k n J i Q x−= ≤ = − = =   (2.6) 
That is, the knowledge of the value of Jn-1 suffices to give the conditional 
probabilistic evolution of the future of the process whatever the values of the 
other past variables might be. 
According to Kingman (1972), the event { }1: ( )nJ iω ω− = is regenerative in the 
sense that the observation of this event gives the complete evolution of the 
process in the future as it could evolve from n=0 as i the initial state. 
(J-X) processes will be fully developed in section 14. 
 
Remark 2.1 The second member of the semi-Markov characterisation property 
(2.2) does not depend explicitly on n; also we can be precise that we are now 
studying homogeneous semi-Markov chains in comparison with the non-
homogeneous case where this dependence with respect to n is valid.  
 
3 PRIMARY PROPERTIES 
 
We will start by studying the marginal stochastic processes ( , 0),nJ n ≥  
( , 0)nX n ≥  called respectively the J-process and the X-process. 
(i)   The J-process 
From the semi-Markov relation (2.2) and Lebesgue’s theorem (see Chapter 1, 
Proposition 4.1)), we deduce that a.s.: 
 

1
( ( , ), 0,..., 1) ( )

nn k k J jP J j J X k n Q
−

= = − = +∞ .  (3.1) 
Using the smoothing property (see Chapter 1, Proposition 6.2) of conditional 
expectation, we get  
 

1
( ( ), 0,..., 1) ( ( ) ( ), 0,..., 1),

nn k J j kP J j J k n E Q J k n
−

= = − = +∞ = −   (3.2) 

and as the r.v. )(
1
+∞

− jJn
Q  is ( , 0,... 1)kJ k n= − ,k=0,…,n-1)-measurable, we 

finally get from relation (2.3) that: 
 

1
( ( ), 0,..., 1)

nn k J jP J j J k n p
−

= = − = .  (3.3) 
Since relation (2.4) implies that the matrix P is a Markov matrix, we have thus 
proved the following result. 
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Proposition 3.1 The J-process is a homogeneous Markov chain with P as its 
transition matrix. 
That is the reason why this J-process is called the imbedded Markov chain of the 
considered SMC in which the r.v. Jn represents the state of the system S just after 
the nth transition. 
From results of Chapter 2, Corollary 9.1,  it follows that in the ergodic case there 
exists one and only one stationary distribution of probability 

1( ,..., )mπ π=π satisfying: 

 1

1

, 1,..., ,

1

m

i j ji
j

m

i
i

p j mπ π

π

=

=

= =

=

∑

∑
  (3.4) 

such that 
 ( )

0lim ( )( lim ) , , ,n
n ij jn n

P J j J i p i j Iπ
→∞ →∞

= = = = ∈   (3.5) 

where we know from Chapter 2, relation (9.17) that 
 ( )n n

ijp⎡ ⎤ =⎣ ⎦ P .  (3.6) 

(ii)    The X-process 
Here, the situation is entirely different because the distribution of Xn depends on 
Jn-1. Nevertheless, we have an interesting property of conditional independence, 
but before giving this property we must introduce some definitions. 
 
Definition 3.1 The two conditional probability distributions 

 1

1

1

1

( ) ( , ),

( ) ( )
n n

n

J J n n n

J n n

F x P X x J J

H x P X x J
−

−

−

−

= ≤

= ≤
 (3.7) 

are respectively called the conditional and unconditional distributions of the 
sojourn time Xn. 
 
From the general properties of conditioning recalled in Chapter 1, section 6.2, we 
successively get  

 

( )1

-1

-1

-1

-1

1

1

( ) ( ( , ), 1, ) ,

( )
               ,

( )
               ,

n n

n n

n n

n n

n n

J J n k k n n n

J J
n n

J J

J J

J J

F x E P X x J X k n J J J

Q x
E J J

p

Q x
p

− −

−

= ≤ ≤ −

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

=

  (3.8) 

provided that 
1n nJ Jp
−

 is strictly positive. If not, we can arbitrarily give to (3.8) for 
example the value U1(x) defined as 



 
 
 
 
 
 
Markov renewal processes                                                                                  81 

 

 1

0, 0,
( )

1, 0.
x

U x
x
<⎧

= ⎨ ≥⎩
  (3.9) 

Moreover, from the smoothing property, we also have: 

 
1 1

1 1

1 1

1

( )( ( )) ( ( ) )

                                          ( ).

n n n

n n n n

J n n J J n

m

J J J J
j

H x P X x J E F x J

p F x

− −

− −

− −

=

= ≤ =

= ∑
  (3.10) 

We have thus proved the following proposition. 
 
Proposition 3.2 As a function of the semi-kernel Q, the expressions conditional 
and unconditional distributions of the sojourn time Xn  are given by: 

 
1

1

1
1

( )
, 0,

( )( ( , ))
( ), 0,

( )( ( )) ( ).

ij
ij

ijij n n n

ij

m

i n n ij ij
j

Q x
p

pF x P X x J i J j
U x p

H x P X x J i p F x

−

−
=

⎧
>⎪

= ≤ = = = ⎨
⎪ =⎩

= ≤ = =∑

  (3.11) 

 
Remark 3.1 
(i) From the last relation (3.11), we can also express the kernel Q as a function of 
the Fij, i,j=1,…,m: 
 ( ) ( ), , ,i j ij ijQ x p F x i j I x += ∈ ∈ .  (3.12) 
So, every SMC can also be characterised by the triple (p,P,F) instead of the 
couple (p,Q) where the m m×  matrix F is defined as ijF⎡ ⎤= ⎣ ⎦F  and the functions 

, , 1, ,ijF i j m= …  are distribution functions on support + . 
(ii) We can also introduce the means related to these conditional and 
unconditional distribution functions. 
When they exist we will write 

 
( ), , 1,..., ,

( ), 1,...,

ij i j
R

i i
R

xdF x i j m

xdH x i m

β

η

= =

= =

∫

∫
 (3.13) 

and the last relation (3.11) leading to the relation: 

 
1

m

i ij ij
j

pη β
=

=∑ .  (3.14) 

The quantities ijβ , i,j=1,…,m and iη ,i=1,…,m are respectively called the 
conditional and unconditional means of the sojourn times. 
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We can now give the property of conditional independence. 
 
Proposition 3.3 For each integer k, let n1,n2,…,nk be k positive integers such that 
n1<n2< <nk  and 

1
,...,

kn nx x are k real numbers. Then  we have: 

 
( )1 1 1 1

1 1 11 1

1 1,..., , ,..., ,

( )... ( ),
k k k k

n n n n kk k

n n n n n n n n

J J n J J n

P X x X x J J J J

F x F x
− −

− −≤ ≤

=
  (3.15) 

that is the k random variables 
1
,...,

kn nX X  are conditionally independent given  

1 11 1, ,..., ,
k kn n n nJ J J J− − . 

(i)   The T-process 
By relation (1.4), the sequence ( , 0)nT n ≥  represents successive renewal epochs, 
that is, times at which transitions occur. 
By analogy with renewal theory, we have the following definition.  
 
Definition 3.2 The two-dimensional process (( , ), 0)n nJ T n ≥  is called the Markov 
renewal process of kernel Q. 
 
Before giving an expression for the marginal distribution of the random vector 
(Jn,Tn) with values in I +× , given that J0=i, let us define the marginal 
distributions of the (J,T) process ((Jn,Tn), n 0≥ ): 

0( ) ( , ), , , 0, 0n
ij n nQ t P J j T t J i i j I n t= = ≤ = ∈ ≥ ≥ .  (3.16) 

With ijA⎡ ⎤= ⎣ ⎦A  and ijB⎡ ⎤= ⎣ ⎦B , two m m×  matrices of integrable functions, we 

associate a new matrix •A B  whose general element ( •A B )ij is the function of t 
defined by: 

 
1

( ) ( ) ( ) ( ).
m

ij kj ik
k

t A t y dB y
=

• = −∫∑A B  (3.17) 

It can be easily seen that this type of product, called the convolution product for 
matrices, is associative but not always commutative. 
In the particular case of A=B, we set: 

 
( )(2) ( ) ( )

(0) (1)
0

,..., ,

( ), .

n n
ij

ij

A

Uδ

⎡ ⎤• = • • = = ⎣ ⎦

= =

A A A A A A

A A A
  (3.18) 

If all the functions , , , 1,..., ,ij ijA B i j m= vanish at ∞− , we can also use an 
integration by parts to express (3.17) as follows: 

 
1

( ) ( ) ( ) ( )
m

ij ik kj
k

t B t y dA y
=

• = −∫∑A B   (3.19) 

and moreover if A=B, we get: 
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1

( ) ( ) ( ) ( )
m

ij ik kj
k

t A t y dA y
=

• = −∫∑A B .  (3.20) 

 
Proposition 3.4 For all 0n ≥ , we have: 
 ( )n n

ij ijQ Q= . (3.21) 
Moreover, we also have: 
 ( )lim ( )n n

t
Q t P

→∞
= .  (3.22) 

Remark 3.2 It is clear that the above properties proved for SMC are also valid 
for ESMC. The only difference is that the T-process can no longer be interpreted 
as an extension of a classical renewal process but in fact as a random walk, as the 
r.v. Tn then take their values in  and no longer in +  (see section 14). 
 
4 EXAMPLES 
 
Semi-Markov theory is one of the most productive subjects of stochastic 
processes to generate applications in real-life problems, particularly in the 
following fields: Economics, Manpower models, Insurance, Finance (more 
recently), Reliability, Simulation, Queuing, Branching processes, Medicine 
(including survival data), Social Sciences, Language Modelling, Seismic Risk 
Analysis, Biology, Computer Science, Chromatography and Fluid mechanics. 
Important results in such fields may be found in Janssen (1986) and Janssen and 
Limnios (1999). 
Let us give three examples in the fields of insurance and reliability. 
 
Example 4.1: The claim process in insurance 
Let us consider an insurance company covering m types of risks or having m 
different types of customers for the same risk forming the set I={1,…,m}. 
For example, in automobile insurance, we can distinguish three types of drivers: 
good, average and bad and so I is a space consisting of three states: 1 for good, 2 
for average and 3 for bad. 
Now, let ( , 1)nX n ≥ represent the sequence of successive observed claim 
amounts, ( , 1)nY n ≥  the sequence of interarrivals between two successive claims 
and ( , 1)nJ n ≥  successive types of observed risks. 
In the classical model of risk theory called the Cramer-Lundberg model (1909, 
1955), it is supposed that there is only one type of risk and the claim arrival 
process is a Poisson process of parameter λ ; later, Andersen (1967) extends this 
model to an arbitrary renewal process and moreover in these two classical 
models, the process of claim amounts is a renewal process independent of the 
claim arrival process.  



 
 
 
 
 
 
84                                                                                                              Chapter 3 

The consideration of an SMC for the two-dimensional processes (( , ), 0)n nJ X n ≥  
or/and (( , ), 0)n nJ Y n ≥  gives the possibility to introduce a certain dependence 
between the successive claim amounts. This model was first developed by 
Janssen (1969b, 1970, 1977) along the lines of Miller’s work (1962) and since 
then has lead to a lot of extensions, see for example Asmussen (2000). 
 
Example 4.2: Occupational illness insurance 
This problem is related to occupational illness insurance with the possibility of 
developing partial or permanent disability. In this case the amount of the 
incapacitation allowance depends on the degree of disability recognised for the 
policyholder by the occupational health doctor, in general on a yearly basis, 
because this degree is a function of a professional illness which can become 
better or worse. 
Considering as in the example Chapter 2, section 9.7, this invalidity degree as a 
stochastic process ( , 0)nJ n ≥  where Jn represents the value of this degree when 
the illness really takes its course, we must then introduce the r.v. Xn representing 
the time between two successive transitions from Jn-1 to Jn. 
In practice, these transitions can be observed with periodic medical inspections. 
The assumption that the J-X process is an SMC extends the Markov model of 
Chapter 2 and is fully treated in Janssen and Manca (2006). 
 
Example 4.3: Reliability 
There are many examples of semi-Markov models in reliability theory, see for 
example Osaki (1985) and more recently in Limnios and Oprişan (2001), (2003). 
Let us consider a so-called reliability system S that can be at any time t in one of 
the m states of I={1,…,m}. 
The stochastic process of the successive states of S is represented by 

( ), 0 .tS S t= ≥  
The state space I is partitioned into two sets U and D so that 
 , , , .I U D U D U D= =∅ ≠∅ ≠∅∪ ∩  (4.1) 
The interpretation of these two sets is the following : the subset U contains all 
“good” states, in which the system is working and the subset D of all “bad “ 
states in which the system is not working well or has failed. 
The indicators used in reliability theory are the following ones: 
(i)    the reliability function R giving the probability that the system was always 
working from time 0 to time t: 
  [ ]( )( ) , 0, ,uR t P S U u t= ∈ ∀ ∈  (4.2) 
(ii)    the pointwise availability function A giving the probability that the system 
is working at time t whatever happens on (0,t]: 
  ( )( ) ,tA t P S U= ∈  (4.3) 
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(iii)   the maintainability function M giving the probability that the system, being 
in D on [0,t), will leave the set D at time t: 
 [ )( )( ) , 0, , .u tM t P S D u t S U= ∈ ∈ ∈  (4.4) 

 
5 MARKOV RENEWAL PROCESSES, SEMI-MARKOV 
AND ASSOCIATED COUNTING PROCESSES 
 
Let us consider an SMC of kernel Q; we then have the following definitions. 
 
Definition 5.1 The two-dimensional process (J,T)=((Jn,Tn),n 0≥ ) where Tn is 
given by relation (1.4) is called a Markov renewal sequence or Markov  renewal 
process. 
 
Çinlar (1969) also gives the term Markov additive process. It is justified by the 
fact that, using relation (1.5), we get: 

 1 1

1 1

( , ( , ), 0,..., )

( , ( , ), 0,..., ) Q ( ).
n

n n k k

n n n k k J j n

P J j T x J T k n

P J j X x T J T k n x T
+ +

+ +

= ≤ =

= = ≤ − = = −
 (5.1) 

This last equality shows that the (J,T) process is a Markov process with I +×  
as state space and having the “additive property”:  
 1 1n n nT T X+ += + .  (5.2) 
Let us say that according to the main definitions of Chapter 2, Definition 2.1, 
always in the case of positive (J,X) chains, the random variables ,( 0)nT n ≥  are 
from now on called Markov renewal times or simply renewal times, the random 
variables ,( 1)nX n ≥  interarrival or sojourn times and the random variables 

,( 0)nJ n ≥  the state variables. 
We will now define the counting processes associated with any Markov renewal 
process (in short MRP) as we already did in the special case of renewal theory. 
For any fixed time t, the r.v. N(t) represents the total number of jumps or 
transitions of the (J,X) process on (0,t], including possible transitions from any 
state towards itself (virtual transitions), transitions supposed to be observable. 
As in renewal theory, we have: 
 ( ) nN t t T t> ⇔ ≤ .  (5.3) 
But here, we can be more precise and only count the total number of passages in 
a fixed state I always in (0,t] represented by the r.v. Ni(t). 
Clearly, we can write: 

 
1

( ) ( ), 0
m

i
i

N t N t t
=

= ≥∑ .  (5.4) 
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Definition 5.2 To each Markov renewal process, the following m+1 stochastic 
processes are associated respectively with values in : 
(i)    the N-process (N(t),t≥ 0), 
(ii)   the Ni-process (Ni(t),t 0≥ ), i=1,…,m, 
respectively called the associated total counting process and the associated 
partial counting processes with of course: 
 N(0)=0,Ni(0)=0,i=1,…,m.  (5.5) 
It is now easy to introduce the notion of a semi-Markov process by considering at 
time t, the state entered at the last transition before or at t, that is JN(t). 
 
Definition 5.3 With each Markov renewal process, we associate the following 
stochastic Z-process with values in I: 
 Z=(Z(t),t 0≥ ), (5.6) 
with: 
 Z(t)=JN(t). (5.7) 
This process will be called the associated semi-Markov process or simply the 
semi-Markov process (in short SMP) of kernel Q. 
 
Remarks 5.1 
1)   As in renewal theory, we will often use counting variables including the 
initial renewal, that is: 

 
0

'

'( ) ( ) 1,
( ) ( ) .i i iJ

N t N t
N t N t δ

= +

= +
 (5.8) 

 

 
Figure 5.1: a trajectory of an SMP 

 
2)     Figure 5.1 gives a typical trajectory of MRP and SMP. 
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3)    It is now clear that we can immediately consider an MRP defined by kernel 
Q without speaking explicitly of the basic (J,X) process with the same kernel Q, 
because the basic property (2.6) is equivalent to (5.1). 
 
6 MARKOV RENEWAL FUNCTIONS 
 
Let us consider an MRP of kernel Q and to avoid trivialities, we will assume that: 
 

,
sup (0) 1,ij

i j
Q <  (6.1) 

where the functions Qij are defined by relation (2.2). 
If the initial state J0 is i, let us define the r.v. ( )nT i i , 1≥n , as the times (possibly 
infinite) of successive returns to state i, also called successive entrance times into 
{}i . 
From the regenerative property of RRP, whenever the process enters into state i, 
say at time t, the evolution of the process on [ ),t ∞  is probabilistically the same 
as if we had started at time 0 in the same state i. 
It follows that the process ( )( ), 0nT i i n ≥  with: 

 ( )0 0T i i =  (6.2) 
is a renewal process that could be possibly defective. 
From now on, the r.v. ( )nT i i  will be called the nth return time to state i. 
More generally, let us also fix state j, different from state i already fixed; we can 
also define the nth return or entrance time to state j, but starting from i as initial 
state. This time, possibly infinite too, will be represented by ( )( ), 0nT j i n ≥ , 

using here too the convention that 
 ( )0 0T j i = . (6.3) 

Now, the sequence ( )( ), 0nT j i n ≥  is a delayed renewal process with values in 
+ . 

It is thus defined by two d.f.: Gij being that of ( )1T j i  and Gjj that of 

( ) ( )2 1T j i T j i− , so that: 

 
( )( )
( ) ( )( )

1

1

( ) ,

( ) , 2.

ij

jj n n

G t P T j i t

G t P T j i T j i t n−

= ≤

= − ≤ ≥
 (6.4) 

Of course, the d.f. Gjj suffices to define the renewal process ( )( ), 0nT j j n ≥ . 
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Remark 6.1 From the preceding definitions, we can also write that: 

 
( )

( )( )
0

1

( ) ( ) 0 ; , ,

1 ( )

ij j

ij

G t P N t J i i j I

P T j i G

= > = ∈

= +∞ = − +∞
 (6.5) 

and for the mean of the ( )nT i i , 1≥n , possibly infinite, we get: 

 ( )( )1
0

( ),ij ijE T j i tdG tμ
∞

= = ∫  (6.6) 

with the usual convention that 
 0 ( )⋅ +∞ = 0. (6.7) 
The means , ,ij i j Iμ ∈  are called the first entrance or average return times. 
 
Lemma 6.1 The functions , ,ijG i j I∈  satisfy the following relationships: 

1
( ) ( ) (1 ) ( ), , , 0.

m

ij kj ik jj ij
k

G t G Q t G Q t i j I t
=

= • + − • ∈ ≥∑  (6.8) 

 
For each possibly delayed renewal process defined by the couple (Gij,Gjj), i,j 
belonging to I, we will represent by Aij and Rij  the associated renewal functions 
defined by relations 2(2.4) and 2(3.12) so that: 

 0

'
0

( ) ( ( ) ),

( ) ( ( ) )
ij j

ij j

A t E N t J i

R t E N t J i

= =

= =
 (6.9) 

and by relations (5.8): 
 0( ) ( ) ( ).ij ij ijR t U t A tδ= +  (6.10) 
From relations 2(9.7), 2(3.9) and 2(3.14), we get: 

 
( )

0

( ) ( ), ,

( ) ( ).

n
jj jj

n

ij ij jj

R t G t j I

R t G R t

∞

=

= ∈

= •

∑  (6.11) 

Or equivalently, we have: 

 ( )
0

0

( ) ( ) ( ), , .n
ij ij ij jj

n

R t U t G G t i j Iδ
∞

=

= + • ∈∑  (6.12) 

 
Proposition 6.1 Assumption ∞<m  implies that: 
(i)     at least one of the renewal processes  ( )( ), 0 ,nT j j n j I≥ ∈ is not defective, 

(ii)    for all i belonging to I, there exists a state s such that 
  ( )lim , . .,nn

T s i a s= +∞  (6.13) 

(iii)   for the r.v. Tn defined by relation (1.4), given that J0=i whatever i is, we 
have a.s. that  
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 lim .nn
T = +∞  (6.14) 

 
The following relations will express the renewal functions , ,ijR i j I∈ as a 
function of the kernel Q instead of the m2 functions Gij. 
 
Proposition 6.2 For every i and j of I, we have that: 

 ( )

0

( ) ( ).n
ij ij

n
R t Q t

∞

=

=∑  (6.15) 

 
Using matrix notation with: 
 ijR⎡ ⎤= ⎣ ⎦R , (6.16) 

relation (6.14) takes the form: 

 ( )

0

.n

n

∞

=

=∑R Q  (6.17) 

Let us now introduce the L-S transform of matrices. 
For any matrix of suitable functions Aij from + to represented by 
 ijA⎡ ⎤= ⎣ ⎦A  (6.18) 

we will represent its L-S transform by: 
 ijA⎡ ⎤= ⎣ ⎦A  (6.19) 

with 

 
0

( ) ( ).st
ij ijA s e dA t

∞
−= ∫  (6.20) 

Doing so for the matrix R , we get the matrix form of relation (6.15), 

 ( )
0

( ) ( )
n

n
s s

∞

=

=∑R Q . (6.21) 

From this last relation, a simple algebraic argument shows that, for any s>0, 
relations 
 ( )( ( )) ( ( ) ( )s s s s− = − =R I Q I Q R I  (6.22) 
hold and so, we also have that: 
 1( ) ( ( )) .s s −= −R I Q  (6.23) 
We have thus proved the following proposition. 
 
Proposition 6.3 The Markov renewal matrix R  is given by 

 ( )

0
,n

n

∞

=

=∑R Q  (6.24) 

the series being convergent in + . 
Moreover, the L-S transform of the matrix R  has the form: 
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 1( ) ,−= −R I Q  (6.25) 
the inverse existing for all positive s. 
 
The knowledge of the Markov renewal matrix R  or its L-S transform R  leads to 
useful expressions for d.f. of the first entrance times. 
 
Proposition 6.4 For the L-S transforms of the first entrance time distributions, 
we have: 

 
1

1

( )( ( )) , ,
( )

1 ( ( )) , .
ij jj

ij
jj

R s R s i j
G s

R s i j

−

−

⎧ ≠⎪= ⎨ − =⎪⎩
 (6.26) 

Inversely, we have: 

 
1

( )
, ,

1 ( )( )
1 ( ( )) , .

ij

jjij

jj

G s
i j

G sR s
G s i j−

⎧
≠⎪

−= ⎨
⎪ − =⎩

 (6.27) 

 
7 CLASSIFICATION OF THE STATES OF AN MRP 
 
To give the classification of the states here, we will proceed as we did in the case 
of Markov chains: that is, by considering the embedded renewal processes or 
delayed renewal processes of return times in the different states of I. 
This gives the following definition. 
 
Definition 7.1 The state j of I is said to be recurrent, transient, aperiodic or 
periodic with period d. according to the associated embedded renewal processs 
is recurrent, transient,r aperiodic or periodic with period d. 
Moreover, j is positive (or non-null) recurrent iff jjμ  is finite. 
 
The next proposition establishes the interaction between classification of the 
states of an MRP and that of the same states but for the imbedded MC 
( , 0)nJ n ≥ . 
 
Proposition 7.1 
(i)    j is recurrent for the MRP iff j is recurrent, necessarily positive in the 
imbedded MC, 
(ii)  if 

,
sup ij

i j
b < ∞ , then j recurrent for the MRP implies that it is positive 

recurrent, 
(iii)   j transient for the MRP implies that j is also transient for the imbedded MC. 
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Definition 7.2 State j of an MRP is accessible from state i, or j can be reached 
from state i, if there exists a strictly positive t such that: 
 ( )( ) (0) 0P Z t j Z i= = > . (7.1) 
 
Remark 7.1 A state j is periodic for the MRP iff the d.f. Gjj is arithmetic. 
 
It is clear that the periodicity of a state j for the MRP bears no relation to the 
periodicity of this state in the embedded MC. 
For the periodicity in the MRP, Çinlar (1975b) had nevertheless proved the 
following result: 
If j can be reached from i and if i can be reached from j, then state i and j are both 
aperiodic or both periodic and, in this latter case, have the same period. 
 
Definition 7.3 An MRP will be called irreducible if every state can be reached 
from any state. 
 
From Remark 7.1, it follows that in the irreducible case, all the states are both 
periodic with the same period or both aperiodic. 
From Proposition 7.1, we can deduce the following result. 
 
Proposition 7.2 An MRP is irreducible iff the imbedded MC is also irreducible. 
 
Definition 7.4 An MRP will be called ergodic iff it is irreducible aperiodic, and 
if the imbedded MC is also aperiodic. 
The semi-Markov kernel Q corresponding to an ergodic MRP is also called an 
ergodic kernel. 
 
From Remark 7.1, the ergodicity of an MRP implies that of the imbedded MC, 
but the ergodicity of the imbedded MC only implies the irreducibility of the 
MRP. 
 
8 THE MARKOV RENEWAL EQUATION 
 
This paragraph will extend the basic results related to the renewal equation 
developed in section 4 of Chapter 2 to the Markov renewal case. 
Let us consider an MRP of kernel Q. 
From relation (6.15), we get: 

 
( )

( )
0

1

0

( ) ( ) ( )

         ( ) ( ).

n
ij ij ij

n

ij ij

R t U t Q t

U t Q R t

δ

δ

∞

=

= +

= + •

∑
 (8.1) 

Using matrix notation with: 
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 0( ) ( )ijt U tδ⎡ ⎤= ⎣ ⎦I , (8.2) 

relations (8.1) take the form: 
 ( ) ( ) ( ).t t t= + •R I Q R  (8.3) 
This integral matrix equation is called the Markov renewal equation for R. 
To obtain the corresponding matrix integral equation for the matrix  
 ,ijH⎡ ⎤= ⎣ ⎦H  (8.4) 

we know, from relation (6.10) that 
 ( ) ( ) ( ).t t t= +R I H  (8.5) 
Inserting this expression of R(t) in relation (8.3), one obtains: 
 ( ) ( ) ( )t t t= + •H Q Q H  (8.6) 
which is the Markov renewal equation for H. 
Of course, for m=1, this last equation gives the classical renewal equation (4.1) 
of Chapter 2. 
In fact, the Markov renewal equation (8.3) is a particular case of the matrix 
integral equation of the type: 
 ,= + •f g Q f  (8.7) 
called an integral equation of Markov renewal type (in short MRT), where  
 ( ) ( )1 1,..., ', ,..., 'm mf f g g= =f g  (8.8) 
are two column vectors of functions having all their components in B, the set of 
single-variable measurable functions, bounded on finite intervals or to B+ if all 
their components are non-negative. 
 
Proposition 8.1 The Markov integral equation of MRT, 
 = + •f g Q f  (8.9) 
with f,g belonging to B+, has the unique solution: 
 = •f R g . (8.10) 
 
9 ASYMPTOTIC BEHAVIOUR OF AN MRP 
 
We will give asymptotic results, first for the Markov renewal functions and then 
for solutions to integral equations of an MRT. 
To finish, we will apply these results to transition probabilities of an SMP. 
 
9.1 Asymptotic Behaviour Of Markov Renewal Functions 
 
We know that the renewal function Rij , i,j belonging to I, is associated with the 
delayed renewal process, possibly transient, characterized by the couple 
(Gij,Gjj).d.f. on + . 
Let us recall that ijμ  represents the mean, possibly infinite, of the d.f. Gij. 
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Proposition 9.1 For all i,j of I, we have: 

(i)    
( ) 1lim ,ij

t
jj

R t
t μ→∞

=   (9.1) 

(ii)   
( ) ( )

lim ij ij

t
jj

R t R t τ τ
τ μ→∞

− −
= , for every fixed τ . (9.2) 

 
The next proposition, due to Barlow (1962), is a useful complement to the last 
proposition as it gives a method for computing the values of the mean return 
times ,jj j Iμ ∈ , in the ergodic case. 
 
Proposition 9.2 For an ergodic MRP, the mean return times satisfy the following 
linear system: 
 , 1,..., .ij ik kj i

k j
p i mμ μ η

≠

= + =∑  (9.3) 

In particular, for i=j, we have: 

 1 , 1,..., ,jj k k
kj

j mμ π η
π

= =∑  (9.4) 

where the ,i i Iη ∈  are defined by relation (3.14), and where ( )1,..., mπ π=π  is 
the unique stationary distribution of the imbedded Markov chain. 
 
Remark 9.1 In a similar manner, Barlow (1962) proved that if (2) , ,ij i j Iμ ∈  is the 
second order moment related to the d.f. Gij , then: 
 (2) (2) (2)( 2 )ij i ik ik ik kj

k j
p bμ η μ μ

≠

= + +∑  (9.5) 

and in particular for i=j: 

 (2) (2)1 ( 2 )jj k k l lk k kj
k k j lj

p bμ π η π μ
π ≠

= +∑ ∑∑  (9.6) 

with 
 

[ )

(2) 2

0,

( ), ,k kx dH x k Iη
∞

= ∈∫  (9.7) 

provided that these quantities are finite. 
 
9.2 Asymptotic Behaviour Of Solutions Of Markov Renewal 
Equations 
 
Under the assumptions of Proposition 8.1, we know that the integral system 
(8.9), that is 
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[ ]0,

( ) ( ) ( ) ( ),i i j ij
j t

f t g t f t s dQ s i I= + − ∈∑ ∫ , (9.8) 

has the unique solution 
 

[ ]0,

( ) ( ) ( ), .i j ij
j t

f t g t s dR s i I= − ∈∑ ∫  (9.9) 

For the asymptotic behaviour of this solution for t tending toward +∞ , we have 
the analogue of Proposition 4.2 of Chapter 2, i.e. the key renewal theorem. 
 
Proposition 9.3 (Key Markov renewal theorem) 
For any ergodic MRP, we have: 

 
[ ]

0

0,

( )
lim ( ) ( ) ,

j j
j

j ijt j j kt
j

g y dy
g t s dR s

π

π η

∞

→∞
− =

∑ ∫
∑ ∫ ∑

 (9.10) 

provided that the functions gi, i belonging to I, are directly Riemann integrable. 
 
 
10 ASYMPTOTIC BEHAVIOUR OF SMP 
 
10.1 Irreducible Case 
 
Let us consider the SMP (Z(t), t 0≥ ) associated with the MRP of kernel Q and 
defined by relation (5.6). 
Starting with (0)Z i= , it is important for the applications to know the probability 
of being in state j at time t, that is: 
 ( )( ) ( ) (0) .ij t P Z t j Z iφ = = =  (10.1) 
A simple probabilistic argument using the regenerative property of the MRP 
gives the system satisfied by these probabilities as a function of the kernel Q: 

 
0

( ) (1 ( )) ( ) ( ), , .
t

ij ij i kj ik
k

t H t t y dQ y i j Iφ δ φ= − + − ∈∑∫  (10.2) 

It is also possible to express the transition probabilities of the SMP with the aid 
of the first passage time distributions , ,ijG i j I∈ : 
 ( ) ( ) (1 ( )), , .ij jj ij ij it G t H t i j Iφ φ δ= • + − ∈  (10.3) 
If we fix the value j in relations (10.2), we see that the m relations for i=1,…,m 
form a Markov renewal type equation (in short MRE) of form (8.9). 
Applying Proposition 8.1, we immediately get the following proposition. 
 
Proposition 10.1 The matrix of transition probabilities  
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 ijφ⎡ ⎤= ⎣ ⎦Φ  (10.4) 

is given by 
 ( )= • −Φ R I H  (10.5) 
with 
 .ij iHδ⎡ ⎤= ⎣ ⎦H  (10.6) 

 
So, instead of relation (10.3), we can now write: 
 

[ ]0,

( ) (1 ( )) ( ).ij j ij
t

t H t y dR yφ = − −∫  (10.7) 

 
Remark 10.1 Probabilistic interpretation of relation (10.7) 
This interpretation is analogous to that of the renewal density given in Chapter 2,  
 
Remark 10.2: the “infinitesimal” quantity dRij(y) (=rij(y)dy, if rij(y) is the density 
of the function Rij, if it exists) represents the probability that there is a Markov 
renewal into state j in the time interval (y,y+dy), starting at time 0 in state i. 
Of course, the factor (1 − Hj(t − y)) represents the probability of not leaving state j 
before a time interval of length t− y. 
 
The behaviour of transition probabilities of matrix (10.4) will be given in the next 
proposition. 
 
Proposition 10.2 Let ( )( ), 0Z Z t t= ≥ be the SMP associated with an ergodic 
MRP of kernel Q; then: 

 lim ( ) , , .j j
ijt

k k
k

t i j I
π η

φ
π η→∞

= ∈
∑

 (10.8) 

 
Remark 10.3 
(i)    As the limit in relation (10.8) does not depend on i, Proposition 10.2 
establishes an ergodic property saying that: 
 

 

lim ( ) ,

.

ij jt

j j
j

k k
k

tφ

π η
π η

→∞
= Π

Π =
∑

 (10.9) 

(ii)    As the number m of states is finite, it is clear that ( ),j j IΠ ∈ is a probability 

distribution. Moreover, as 0jπ >  for all j (see relation (9.89) of Chapter 2), we 
also have 
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 0, .j j IΠ > ∈  (10.10) 
So, asymptotically, every state is reachable with a strictly positive probability. 
(iii)    In general, we have: 
 ( )lim lim ( )n

ij ijn t
p tφ

→∞ →∞
≠  (10.11) 

since of course 
 , .j j j Iπ ≠ Π ∈  (10.12) 
 
This shows that the limiting probabilities for the imbedded Markov chain are not, 
in general, the same as taking limiting probabilities for the SMP. 
From Propositions 10.2 and 9.2, we immediately get the following corollary. 
 
Corollary 10.1 For an ergodic MRP, we have: 

 .j
j

jj

π
μ

Π =  (10.13) 

 
This result says that the limiting probability of being in state j for the SMP is the 
ratio of the mean sojourn time in state j to the mean return time of j.  
This intuitive result also shows how the different return times and sojourn times 
have a crucial role in explaining why we have relation (10.13) as, indeed, for the 
imbedded MC, these times have no influence. 
 
10.2 Non-Irreducible Case 
 
It happens very often that stochastic models used for applications need non-
irreducible MRP, as for example, in presence of an absorbing state, i.e. a state j 
such that 
 1.jjp =  (10.14) 
We will now see that the asymptotic behaviour is easily deduced from the 
irreducible case studied above. 
 
10.2.1 Uni-Reducible Case 
 
As for Markov chains, this is simply the case in which the imbedded MC is uni-
reducible so that there exist l (l<m) transient states, and so that the other m l−  
states form a recurrent class C. 
We always suppose aperiodicity both for the imbedded MC and the considered 
MRP. 
Let T={ }1,...,l  be the set of transient states ( )T I C= − .From Proposition 9.5 of 
Chapter 2, we know that: 
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 lim ( ) 0, , .ijt
t i j Tφ

→∞
= ∈  (10.15) 

Moreover, from Proposition 10.2 and relation (10.3):  

 

1

lim ( ) ( ) , , ,j j
ij ij mt

k k
k l

t G i j C
π η

φ
π η

→∞

= +

= ∞ ∈

∑
 (10.16) 

where ( )1,...,l mπ π+  represents the unique stationary probability distribution of 
the sub-Markov chain with C as state space. 
Since 
 ( ) ,ij ijG f∞ =  (10.17) 
we get 
 ,( ) ,ij i CG f∞ =  (10.18) 
where fi,C is the probability that the system, starting in state i, will be absorbing 
by the recurrent class C. 
As there is only one essential class, we know that for all states i of I: 
 fi,C=1, (10.19) 
proving so the following proposition. 
 
Proposition 10.3 For any periodic uni-reducible MRP, we have: 
 'lim ( ) , ,ij jt

t j Iφ
→∞

= Π ∈  (10.20) 

where 

 '

1

0,   ,

, .j j
j m

k k
k l

j T

j Cπ η

π η
= +

∈⎧
⎪⎪Π = ∈⎨
⎪
⎪⎩
∑

 (10.21) 

Here too, as the limit in (10.21) is independent of the initial state i, this result 
gives an ergodic property. 
 
10.2.2. General Case 
 
For any aperiodical MRP, there exists a unique partition of the state space I: 
 1 , ,rI T C C r m= <∪ ∪ ∪  (10.22) 
where T represents the set of transient states and , 1,...,C rν ν =  represents the 
ν th essential class  necessarily formed of positive recurrent states. 
From Chapter 2, we know that the system will finally enter one of the essential 
classes and will then stay in it forever. So a slight modification of the last 
proposition leads to the next result. 
 
Proposition 10.4 For any aperiodic MRP, we have : 
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 'lim ( ) , , ,ij ijt
t i j Iφ

→∞
= Π ∈  (10.23) 

with, for any , 1,...,j C rν ν∈ = : 

 

'

'
'

'
,

, , 1,..., ,
0, , ', ' 1,..., ,

,

j

ij

i C j

i C r
i C v r

f i T
ν

ν
ν

ν
ν

ν
ν ν

⎧ Π ∈ =
⎪

Π = ∈ ≠ =⎨
⎪ Π ∈⎩

 (10.24) 

where '( , )j j Cν
νΠ ∈ is the only stationary distribution of the sub-SMP with Cν as 

state space, that is : 

 ' ,j j
j

k k
k Cν

π η
π η

∈

Π =
∑

 (10.25) 

where ( ),k k Cν
νπ ∈ is the unique stationary distribution of the sub-Markov chain 

with Cν as state space and ( ), ,i Cf i T
ν

∈ is the unique solution of the linear system 

 , .i ij j ij
j T j C

y p y p i T
ν∈ ∈

− = ∈∑ ∑  (10.26) 

 
Note that, in this proposition, the ergodic property is lost; this is due to the 
presence of the quantities ,i Cf

ν
 in relation (10.24). 

 
11 DELAYED AND STATIONARY MRP 
 
Let us suppose we begin to observe the evolution of an economic or physical 
system S at time T0 and that the probabilistic evolution of this system is like a 
semi-Markov process. 
There is absolutely no reason that we should observe a transition of the system at 
time 0. In fact, we observe the state Z(0) while waiting for the first observed 
transition occurring at random time T1. The first lifetime X1 is a residual time and 
may have its own distribution function. 
This leads to the concept of delayed MRP. 
 
Definition 11.1 The bidimensional process ( )( , ), 0n nJ T n ≥ with 

 0

1

0,
, 1,n n

T
T X X n

=
= + + ≥

 (11.1) 

is called a delayed Markov renewal sequence or delayed Markov renewal 
process (in short DMRP) of triplet ( ), ,p Q Q if 
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( )
( )

0

1 1 0

(i) ( ) , ,

(ii) , ( ), , ,

(iii) , ( , ), 0,..., 1 ( ), , , , 1.

i

ij

n n k k ij

P J i p i I

P J j X x J i Q x i j I

P J j X x J X k n Q x i j I x n

= = ∈

= ≤ = = ∈

= ≤ = − = ∈ ∈ >

 (11.2) 

 
This definition is clearly based upon the supposition that the m-dimensional 
vector 1( ,..., )mp p=p represents a probability distribution on I and that matrices 

,Q Q  are two semi-Markov kernels. 
As in the case of renewal theory, there exist simple relations between renewal 
functions, marginal distributions, etc… of a DMRP of triplet ( , , )p Q Q  and the 
corresponding functions of the classical associated MRP of kernel Q. 
So, with the convention of adding a tilde to the functions related to the DMR, let 

( )ijR t be the Markov renewal functions of the DMRP, that is: 

 ( )0( ) ( ) .ij jR t E N t J i= =  (11.3) 

We know that: 

 

( )0
1

( 1)

1

1

( ) ,

          = ( )

          = ( ).

ij n n
n

n
ik kj

n

ik kj
n

R t P J j T t J i

Q Q t

Q R t

∞

=

∞
−

=

∞

=

= = ≤ =

•

•

∑

∑

∑

 (11.4) 

If we now consider the transition probabilities for the delayed semi-Markov 
process ( )( ), 0Z t t ≥ , associated with the DMRP of triplet ( ), ,p Q Q ,that is: 

 ( )( ) ( ) (0) ,ij t P Z t j Z iφ = = =  (11.5) 

using as usual, a simple probabilistic argument, we get: 

 
1 0

( ) (1 ( )) ( ) ( ),
tm

ij ij j kj ik
k

t H t t y dQ yφ δ φ
=

= − + −∑∫  (11.6) 

where of course, the kjφ are the transition probabilities of the SMP of kernel Q 
and with  

 
1

( ) ( ), , 0.
m

j jk
k

H t Q t j I t
=

= ∈ ≥∑  (11.7) 

Using Proposition 10.1, relation (11.4) gives  

 
1

( ) (1 ( )) (1 ) ( ),
m

ij ij j j kj ik
k

t H t H R Q tφ δ
=

= − + − • •∑  (11.8) 

and from relation (11.6): 
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 ( ) (1 ( )) (1 ) ( ).ij ij j j ijt H t H R tφ δ= − + − •  (11.9) 
Relation (11.6) also shows that the limiting distributions of the transition 
probabilities , ,ij i j Iφ ∈ exist and are known provided the limiting distributions of 
the transition probabilities , ,ij i j Iφ ∈ exist and are known too. 
Indeed, let us suppose that 
 lim ( ) , , ,ij ijt

t i j Iφ
→∞

= Π ∈  (11.10) 

then,  from relation (11.8), the limits 
 lim ( ) , ,ij ijt

t i j Iφ
→∞

= Π ∈  (11.11) 

also exist and moreover they are given by 

 
1

, , ,
m

ij ik kj
k

p i j I
=

Π = Π ∈∑  (11.12) 

where 
 ( ).ij ijp Q= +∞  (11.13) 
Using now Proposition 10.2 and relation (11.11), we get the following result. 
 
Proposition 11.1 If the MRP associated with the DMRP of triplet ( ), ,p Q Q  is 

irreducible, then 
 lim ( ) ; ,ij jt

t i j Iφ
→∞

= Π ∈  (11.14) 

with 

 , .j j
j

k k
k

j I
π η
π η

Π = ∈
∑

 (11.15) 

 
It follows that in the ergodic case, both DSMP and associated SMP have the 
same asymptotic behaviour. 
As in renewal theory, a very special but very interesting case of the notion of 
DMRP, is the case of the so-called stationary MRP (in short SMRP).This type of 
process appears when one begins to observe an MRP which has been running a 
long time so that the first observed r.v. X1 is in fact the excess γ . 
More precisely, let us define the vector Sp  whose jth component (j=1,…,m) is 
given by 
 ,S j jp = Π  (11.16) 

and let us define the semi-Markov kernel SQ as follows: 
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 , 0

1 ( ( ) , 0,
( )

0.
0,

x

ij ij
S ij i

p Q y dy x
Q x

x
η
⎧

− ≥⎪= ⎨ <⎪
⎩

∫  (11.17) 

We can now give the following definition. 
 
Definition 11.2 The DMRP of triplet ( ), ,S Sp Q Q  with kernel Q ergodic, is 

called a stationary MRP (in short SMRP) of kernel Q. 
 In this case, it can be proved that (see Janssen and Manca (2006)) 

 1 1
0

1( , ) (1 ( )) .
x

j jk jk
j

P J k X x p F y dy
ν ν

ν

π
π η

= ≤ = −∑ ∫∑
 (11.18) 

This last result comes from the fact that 
 1 1 , ,( , ) ( )S l S lk

l
P J k X x p Q x= ≤ = ∑  (11.19) 

and so 

 1 1
0

1( , ) ( ( )) ,
x

j jk jk
j

P J k X x p Q y dy
ν ν

ν

π
π η

= ≤ = −∑ ∫∑
 (11.20) 

which is equivalent to (11.18). 
The next propositions give specific properties of SMRP. 
Of course, r.v. NS,j(t) represents the total number of passages in state j on [0,t] for 
the considered SMRP. From this point on, we will systematically use the 
subscript “S” for parameters related to the SMRP. 
 
Proposition 11.2 For every SMRP of triplet ( ), ,S Sp Q Q  with kernel Q ergodic, 

all renewal functions are linear. More precisely: 

 ,( ( )) , .j
S j

j

E N t t j I
η
Π

= ∈  (11.21) 

Corollary 12.1 For every SMRP of triplet ( ), ,S Sp Q Q with kernel Q ergodic, we 

have: 

 ,
1

( ) .
m

S j
j

tE N t
η=

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑  (11.22) 

 
This corollary shows that in looking at the total number of transitions, every 
SMRP is, on the average, equivalent to a stationary renewal process defined by 
the d. f. H given by: 
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1

.
m

j j
j

H Hπ
=

=∑  (11.23) 

The linearity of Markov renewal functions related to ergodic associated SMRP 
will give, as the main consequence, the stationarity of the basic stochastic 
processes related to it. 
This means that all marginal distributions will no longer depend on t, and in 
particular, we have 
Proposition 11.3 For any ergodic SMRP defined by kernel Q, the stochastic 
process ( )( ), ( ), 0Z t t tγ ≥ is stationary and  
 ( )( ) .jP Z t j= = Π  (11.24)  

 
12 PARTICULAR CASES OF MRP 
 
We will devote this paragraph to particular cases of MRP having the advantage 
of leading to some explicit results. 
 
12.1 Renewal Processes And Markov Chains 
 
For the sake of completeness, let us first say that with m=1, that is that the 
observed system has only one possible state, the kernel Q has only one element, 
say the d.f. F, and the process (Xn,n>0) is then a renewal process. 
Secondly, to obtain Markov chains studied in Chapter 2, it suffices to choose for 
the matrix F the following special degenerating case: 
 1, ,ijF U i j I= ∀ ∈  (12.1) 
and of course an arbitrary Markov matrix P. 
This means that all r.v. Xn have a.s. the value 1, and so the single random 
component is the (Jn) process, which is, from relation (3.4) a homogeneous MC 
of transition matrix P. 
 
12.2 MRP Of Zero Order (PYKE (1962)) 
 
There are two types of such processes 
 
12.2.1 First Type Of Zero Order MRP 
 
This type is defined by the semi-Markov kernel 
 [ ],i ip F=Q  (12.2) 
so that: 
 , , .ij i ij ip p F F j I= = ∈  (12.3) 
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Naturally, we suppose that for every i belonging to I, pi is strictly positive. 
In this present case, we have that the r.v. , 0nJ n ≥ are independent and identically 
distributed and moreover that the conditional interarrival distributions do not 
depend on the state to be reached, so that, by relation (3.11), 
 , .i iH F i I= ∈  (12.4) 
Moreover, since: 
 

1
( ( , ), 1, ) ( ),

nn k k n JP X x J X k n J F x
−

≤ ≤ − =  (12.5) 
we get: 

 
1

( ( ), 1) ( ).
m

n k j j
j

P X x X k n p F x
=

≤ ≤ − =∑  (12.6) 

Introducing the d.f. F defined as 

 
1

,
m

j j
j

F p F
=

=∑  (12.7) 

the preceding equality shows that, for an MRP of zero order of the first type, the 
sequence ( , 1)nX n ≥  is a renewal process characterized by the d.f. F. 
 
12.2.2 Second Type Of Zero Order MRP 
 
This type is defined by the semi-Markov kernel 
 ,i jp F⎡ ⎤= ⎣ ⎦Q  (12.8) 

so that: 
 , , , .ij i ij jp p F F i j I= = ∈  (12.9) 
Here too, we suppose that for every i belonging to I, pi is strictly positive. 
Once again, the r.v. , 0nJ n ≥ are independent and equidistributed and moreover 
the conditional interarrival distributions do not depend on the state to be left, so 
that, by relation (3.11), 

 
1

( ), .
m

i j j
j

H p F F i I
=

= = ∈∑  (12.10) 

Moreover, since: 
 ( ( , ), 1, ) ( ),

nn k k n JP X x J X k n J F x≤ ≤ − =  (12.11) 
we get 

 
1

( ( ), 1) ( ) ( ).
m

n k j j
j

P X x X k n p F x F x
=

≤ ≤ − = =∑  (12.12) 

The preceding equality shows that, for an MRP of zero order of the second type, 
the sequence ( , 1)nX n ≥  is a renewal process characterized by the d.f. F as in the 
first type; 
The basic reason for these similar results is that these two types of MRP are the 
reverses (timewise) of each other. 
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12.3 Continuous Markov Processes 
 
These processes are defined by the following particular semi-Markov kernel 
 ( )( ) 1 , 0,i x

ijx p e xλ−⎡ ⎤= − ≥⎣ ⎦Q  (12.13) 

where ijp⎡ ⎤= ⎣ ⎦P  is a stochastic matrix and where the parameters ,i i Iλ ∈ are 

strictly positive. 
The standard case corresponds to that in which 0,iip i I= ∈ (see Chung (1960)). 
From relation (12.13), we get: 
 ( ) 1 .i x

ijF x e λ−= −  (12.14) 
Thus the d.f. of sojourn time in state i has an exponential distribution depending 
uniquely upon the occupied state i, such that both the excess and age processes 
also have the same distribution. 
For m=1, we get the usual Poisson process of parameter .λ  
 
13 A CASE STUDY IN SOCIAL INSURANCE (JANSSEN 
(1966)) 
 
13.1 The Semi-Markov Model 
 
We will now return to the problem presented in section 9.7 of Chapter 2 which 
was solved using a Markov chain model. Here, we will extend the model to a 
semi-Markov one allowing us to take into account the duration of passage from 
invalidity degree Sj to invalidity degree Sk. 
In this case, relation (9.114) of Chapter 2 is replaced by the following one: 

 '

1
( ) ( ) .

m

i ij j
j

S t t Sφ
=

=∑  (13.1) 

The study of the financial equilibrium of the funds thus depends on: 
 ' 'lim ( ),i it

S S t
→∞

=  (13.2) 

or 

 '

1
lim ( ) .

m

i ij jtj
S t Sφ

→∞
=

=∑  (13.3) 

It suffices here to apply Proposition 10.3 in order to get the result in the general 
case. 
For the case of uni-reducibility, with P represented by relation (9.117) of Chapter 
2, we get: 



 
 
 
 
 
 
Markov renewal processes                                                                                  105 

 

 
5

'

3
,i j j

j
S S

=

= Π∑  (13.4) 

with 

 5

3

,j j
j

k k
k

π η

π η
=

Π =

∑
 (13.5) 

3 4 5( , , )π π π  being given by relation (9.120) of Chapter 2 and with 

 
5

3
,j jk jk

k
pη β

=

=∑  (13.6) 

jkβ  being the mean of the d.f. Fjk related to the duration of passage from 
invalidity degree Sj  to invalidity degree Sk. 
Here too, although we have uni-reducibility, the asymptotic state iS  is 
independent of the initial state i. 
To pass from the Markov chain model to the semi-Markov one, the additional 
information needed is knowledge of the matrix ijβ⎡ ⎤= ⎣ ⎦Β . 

 
13.2 Numerical Example 
 
In this section we return to the examples mentioned at the end of Chapter 2 to 
give the results obtained in the Markov case and also in a semi-Markov 
environment.  
First we have the asymptotic result related to the disability example shown in 
section 9 of Chapter 2. The means ,i i Iη ∈  were computed from real data from 
Campania, an Italian region with more than 4 million inhabitants, and were 
applied to the M.C. used for the example.  
The semi-Markov asymptotic limit vector is given in Table 13.1. 
  

States iη  iΠ  
1 2.00822 0.00000
2 3.35343 0.00000
3 3.34247 0.22000
4 3.46575 0.34217
5 3.32603 0.43783

Table 13.1: disability iΠ  
 

From result (13.4) and with the degree given in section 9.7 of Chapter 2, we get 
the following result: 
 ' 0.787iS = , (13.7) 
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more or less equivalent to result (9.122) of Chapter 2. 
 
14 (J-X) PROCESSES 
 
In Section 1, we introduced the concept of (J,X) process with Definition 2.4 for 
which the r.v. Xn, n=1,2,…take their values in the whole real line instead of in 

+ for what we called in Definition 2.2 a positive (J,X) process. 
In fact, in 1969, Janssen showed that the consideration of (J,X) processes leads to 
a very interesting generalisation of the classical concept of random walk with  a 
lot of applications in stochastic modelling. Let us begin this section by recalling 
the basic definition. 
 
Definition 14.1 Let p=(p1,…,pm) be an m-dimensional vector of initial 
probabilities and Q an extended semi-Markov kernel as defined by Definition 
2.3. Then every two-dimensional process (( , ), 0,1,...)n nJ X n = with values in 
I ×  and satisfying the conditions 
P(X0=0)=1, a.s., 

 P(J0=i)=pi, i=1,…,m with 
1

1
m

i
i

p
=

=∑ , (14.1) 

for all n>0, j=1,…,m, we have: 
 

1
( , ( , ), 0,..., 1) ( ), . .

nn n k k J jP J j X x J X k n Q x a s
−

= ≤ = − = ,  (14.2) 
is called a (J,X) process or an extended semi-Markov chain (in short, ESMC). 
 
From this definition, it follows that we can no longer represent the sample paths 
of such a process with step functions, as the r.v. Xn can be positive or negative 
but we can see the S-process defined by: 
 0 1 , 0,1,...n nS X X X n= + + + =  (14.3) 
as the successive positions of a particle moving on a real line and starting from 
the origin if the r.v. Xn n=0,1,… represents the successive steps of this random 
movement exactly as the interpretation of a classical random walk corresponding 
to the case of m=1. 
This leads to the following definition. 
 
Definition 14.2 The S-process defined by relation (14.3) is called a semi-Markov 
random walk (in short an SMRW). 
 
It is clear that basic results on positive (J,X) processes given in the preceding 
chapter are still valid here provided that these properties do not involve the non-
negativity of the Xn. 
The following proposition summarises the basic properties. 
 



 
 
 
 
 
 
Markov renewal processes                                                                                  107 

 

Proposition 14.1 (Basic properties of (J,X) processes) 
(i)    The process ( )( , ), 0n nJ S n ≥ is a Markov process with I ×  as state space; 
more precisely, we have a.s. for all j of I and all real x: 
 ( )

1
, ( , ), 0,1,..., 1 ( ).

nn n k k J j nP J j S x J S k n Q x S
−

= ≤ = − = −  (14.4) 

(ii)   The process ( )( ), 0nJ n ≥ is a homogeneous Markov chain with I as state 
space; more precisely, we have a.s. for all j of I: 
 ( )

1
, , 0,1,..., 1 .

nn k J jP J j J k n p
−

= = − =  (14.5) 
(iii)  For all strictly positive n and for all real x, we have: 

 

( )
( )

( )

1

1

1 11
1

1

, , 0,1,..., 1 ( ), 0, ,

, , 0,1,..., ( ), 0, ,

,..., , , 0,1,..., ( ),

(0 , , 1,..., ).

n

n n

l n ni i

n k J

n k J J

k

n n l k k J J i
i

k i

P X x J k n H x n x

P X x J k n F x n x

P X x X x J k n F x

n n x i k

−

−

−
=

≤ = − = > ∈

≤ = = > ∈

≤ ≤ = =

< < < ∈ =

∏
 (14.6) 

 
Of course, probabilities pij, i,j=1,…,m, and functions Hj, j=1,…,m, Fij, i,j=1,…,m 
are defined exactly as in relations (2.3) and (3.11). 
The last relation in (14.6) shows the conditional independence of 

1
,...,

kn nX X given 
1 11, ,...,

kn n nJ J J− . 
From the relation (3.11) saying that: 

 
1

1

1
1

( )
, 0,

( )( ( , ))
( ), 0,

( )( ( )) ( ),

ij
ij

ijij n n n

ij

m

i n n ij ij
j

Q x
p

pF x P X x J i J j
U x p

H x P X x J i p F x

−

−
=

⎧
>⎪= ≤ = = = ⎨

⎪ =⎩

= ≤ = = ∑

 (14.7) 

it is clear that a (J,X) process is completely defined by either the pair ( ),p Q  or 
by the triple ( ), ,p P F  where: 

 1( ,... ), , , .m ij ij ijp p Q p F⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦p Q P F  (14.8) 

 
15 FUNCTIONALS OF (J-X) PROCESSES 
 
This section introduces the concept of functional W of a given (J,X) process, 
fundamental for a lot of applications not only in finance and insurance but also in 
operations research. 
To define the functional W, we introduce a real and Lebesgue measurable 
function f of three variables defined on the set I I× × . 
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When they exist, we will use the following notation for the expectations with 
,i k I∈ : 

 

(2) 2

(2) (2)

1 1

( , , ) ( ), ( , , ) ( ),

, .

ik

i ik

ik ik ik

m m

i ik
k k

f i k x dQ x f i k x dQ xξ ξ

ξ ξ ξ ξ
= =

= =

= =

∫ ∫

∑ ∑
 (15.1) 

 
Definition 15.1 Given a (J,X) process ( )( , ), 0n nJ X n ≥  defined by ( ),p Q , and a 
Lebesgue measurable real function f on I I× × , the functional Wf is defined as 
the stochastic process  
 ( ( ), 0,1,...)f fW W n n= =  (15.2) 
where 

 
1

1

0, 0,
( )

( , , ), 0.
n

f
k k k

k

n
W n

f J J X n−
=

=⎧
⎪= ⎨ >⎪⎩
∑

 (15.3) 

 
Janssen (1969b) extended to functionals of (J,X) processes key results obtained 
by Pyke and Schaufele (1964) for functionals of positive (J,X) processes: the 
strong law of large numbers ( in short SLLN) and the Central Limit Theorem (in 
short CLT). 
The basic idea of the proofs is to decompose the sum Wf(n) by introducing return 
times of return indices for the embedded Markov chain supposed to be ergodic 
( ), 0nJ n ≥  defined by relations (9.44), (9.45) and (9.47) in Chapter 2, that is for 
all j belonging to I: 

 { }
( )

0

( ) ( ) ( )
0 1 1 0

0,

sup : , , , .

j

j j j
n n l n

k

r

r k k r J j r l l n− −

=

= ∈ > ≠ < < ∈
 (15.4) 

We know that the assumption of ergodicity implies that all states are positive 
recurrent so that, for all j, 
 ( )j

nn r→∞⇒ →∞ . (15.5) 
Moreover, if for all j we introduce the stochastic process in discrete time: 
 ( )( ) , 0j

su n >  (15.6) 

with 

 
( )

1

( )

( )
1

1

( , , )
j

s

j
s

r
j

s n n n
n r

u f J J X
+

−
= +

= ∑ , (15.7) 

then it is clear that this process (15.7) is a sequence of independent and 
identically distributed r.v. with values in , that is a random walk on the real 
line. 
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The following important propositions give some results concerning the moments 
of r.v. 1 0, ,ju j I J j∈ = and the fundamental Strong law of large numbers for (J,X) 
processes. 
 
Proposition 15.1 If the embedded Markov chain of the considered (J,X) process 
is ergodic and if the considered functional is such that the expectations (2),i iξ ξ  

exist for all i belonging to I, then ( ) ( )( ) ( ) 2
1 1, ( )j jE u E u exist and are given by: 

 
( )

( )

( )
1

1

( ) 2 (2)
1

1 1

1 ( ),

1 2( ) ( ) ,

m
j

i i jj
ij

m m
j

i i i r kj jr kr ik r
i i k j r jj j

E u

E u m m m

π ξ μ
π

π ξ π π ξ ξ
π π

=

= = ≠ ≠

= =

= + + −

∑

∑ ∑∑∑
 (15.8) 

mean return times in the embedded MC , , ,lsm l s l s I≠ ∈  being given by relations 
(9.42) of Chapter 2. 
 
Proposition 15.2 (Strong law of large numbers for functionals of (J,X) 
processes) 
For any ergodic (J,X) process so  that the conditional means , ,ijb i j I∈ are finite, 
we have the following result: 

 
1

( )
, . .

m
f

i in
i

W n
a s

n
π ξ→∞

=

⎯⎯⎯→∑  (15.9) 

 
The next results are related to a central limit theorem for functionals of (J,X) 
processes. 
 
Proposition 15.3 (Central limit theorem for functionals of (J,X) processes) 
If the expectations iξ  exist for all i belonging to I, we have in the ergodic case 
and for the convergence in law that: 

 1

( )
0, var .

j
f

jj j

n
jj

m
W n n

m m
N u f

mn →∞

−
⎛ ⎞⎛ ⎞

→ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (15.10) 

Moreover, if jjμ defined by the first relation of (15.8) is non-null, then  

 
( )

(0, )f f
gn

W n nA
N B

n
μ

μ→∞

−
⎯⎯⎯→  (15.11) 

where 
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1

1

1

(2) *

*

,

,

1 2 ,

, , ,

m

i i
i

m

i i
i

f m

i i
i

f i i i ik r j kr
i i k j r ji i

i

kj jr kr
j kr

rr

A

B p

m m m
p i j k I

m

μ π η

π ξ

π η

π ξ π ξ ξ
π η

=

=

=

≠ ≠

=

=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

+ −
= ∈

∑

∑

∑

∑ ∑∑∑∑

 (15.12) 

and 1var j

jj

m
u f

m
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

 represents the variance of the function 1
ju defined by the 

relation (15.7) but here related to the function ( )j

jj

m
f

m
− . 

Remark 15.1 It can be proved that Af  and Bf  are independent of state j. 
 
Proposition 15.4 (Central limit theorem for the two-dimensional process 
( ), ( ), 0n fJ W n n ≥ ) 
If the expectations iξ  exist for all i belonging to I, we have in the ergodic case 
and for the convergence in law that: 

 
( )

, ( ),f f
n k

W n nA
P J k x x

n
μ

π
−⎛ ⎞

= ≤ = Φ⎜ ⎟
⎝ ⎠

 (15.13) 

where the function Φ is the distribution function of the normal law (0, )gN Bμ . 
 
Remark 15.2 An immediate consequence of this last proposition is that 
processes ( , 0)nJ n ≥  and ( ( ), 0)fW n n ≥  are asymptotically independent. 
 
These last two propositions immediately give the following one for the special 
case of (J,X) processes 
 
Proposition 15.5 (Central limit theorems for the two-dimensional (J,X) 
processes) 
For any ergodic (J,X) process such that the conditional variances 2

ijσ  related to 
the conditional d.f. , ,ijF i j I∈ are finite, we have the following results: 
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 (0, ),n
gn

S n N B
n
μ

μ→∞

−
⎯⎯⎯→  (15.14) 

 , ( ),n
n k

S nP J k x x
n
μ

π
−⎛ ⎞

= ≤ = Φ⎜ ⎟
⎝ ⎠

 (15.15) 

where the function Φ is the distribution function related to the normal law 

( )0, gN Bμ with here, for all i and k belonging to I: 

 

( )

1

2
(2) 2 2 2

1 1

( , , ) ,

, ,

( ) 2 ,

m

i i
i

ik ik ik i i

m m

ik ik ik ik i i ik i i ik
i i

g i k x x

p b

p b p p

π η

ξ ξ η

ξ σ π η π η

=

= =

= −

= =

⎛ ⎞ ⎛ ⎞
= − − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑

∑ ∑

 (15.16) 

2 ( , )ik i k Iσ ∈  being the conditional variance related to the conditional distribution 
( , )ikF i k I∈ . 

 
16 FUNCTIONALS OF POSITIVE (J-X) PROCESSES 
 
It is clear that all the results of the preceding paragraph are valid for the special 
case of positive (J,X) processes for which the r.v. Xn are a.s. non-negative. 
But moreover instead of considering the sum of the first n transitions to define 
Wf(n) in relation (15.3) we can reinsert the time with a sum up to N(t), that is the 
total number of transitions in the semi-Markov process related to the considered 
semi-Markov kernel Q. 
In fact , this was the case originally considered by Pyke and Schaufele (1964) so 
that now, relation (15.3) takes the form: 

 ( )

1
1

0, ( ) 0,
( )

( , , ), ( ) 0.
N t

f
n n n

k

N t
W t

f J J X N t−
=

=⎧
⎪= ⎨ >⎪⎩
∑

 (16.1) 

These authors proved the next  proposition corresponding to the strong law of 
large numbers and central limit theorem of the preceding sections. 
 
Proposition 16.1 (Strong law of large numbers for functionals of positive (J,X) 
processes) 
If the expectations iξ  exist for all i belonging to I, we have in the ergodic case 
that: 

 
( )

, . .,f j
t

jj

W t m
a s

t m→∞⎯⎯⎯→  (16.2) 

with: 
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 1

1

,

,

m

j i i
i

m

jj i i
i

m

m

π ξ

π η

=

=

=

=

∑

∑
 (16.3) 

the limit ratio /j jjm m  being still independent of j . 
 
The propositions related to the central limit theorem have similar extensions for n 
replaced by N(t) to the numerator and by t to the denominator. 
 
17 CLASSICAL RANDOM WALKS AND RISK THEORY 
 
17.1 Purpose 
 
In the beginning of this chapter, we focused our attention on semi-Markov chains 
defined by a positive (J,X) process. The case of an extended semi-Markov chain 
is considered in section 14 starting from a general (J,X) process and having a 
very different interpretation, directly related to the classical notion of random 
walk. 
In the next subsections, we will recall some basic notions concerning random 
walks that will be extended to the main results of what will be called Markov 
random walks in the next section. 
After that, we will develop the main classical models in risk theory, which is very 
useful for insurance companies. 
 
17.2 Basic Notions On Random Walks 
 
Let ( ), 1nX n ≥  be i.i.d. random variables, with F as common d.f., such that: 
 F(0) < 1, (17.1) 
 F(0) > 0. (17.2) 
These two relations imply that for all n, the events 
 { } { }: 0 , : 0n nX Xω ω> <  (17.3) 
have strictly positive probabilities. 
As usual, let us define the following r.v.: 
 0 0 0, a.s.S X= = , (17.4) 

 
0

n

n k
k

S X
=

=∑ . (17.5) 

We can now give the following basic definition: 
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Definition 17.1 The random sequence ( ), 0nS n ≥  is called a random walk 
starting at x0, whose ( ), 1nX n ≥  are the successive steps. 
 
If x0=0, the random walk is said to start at the origin. 
 
Example 17.1 If the distribution of r.v. Xn is concentrated on a two-point set 
{ }1,1−  with 
 ( 1), ( 1 ) ( 1),n np P X q p P X= = = − = ≠  (17.6) 
then the associated random walk is called the simple random walk or the 
Bernoulli random walk. 
 
The interpretation is quite simple: let us consider for instance a physical particle 
moving on a straight line starting at the origin. 
This particle takes a first unit step to the right with probability p or to the left 
with probability q and so on. 
Clearly, the r.v. Sn will give the position of the particle on the line after the nth 
step.  
Though very particular, the notion of a simple random walk has a lot of 
important applications in insurance, finance and operations research. A very 
classical application is the so-called gambler's ruin problem. 
Let us consider a game with two players such that at each trial, each gambler 
wins 1 monetary unit with probability p and loses 1−  monetary unit with 
probability ( 1 )q p= − . 
If u is the initial "fortune" of one player, he will be ruined at trial n iff, for the 
first time, his fortune just after this trial becomes strictly negative.  
He will be ruined before or at trial n iff he is ruined at one time k, k ≤  n. 
The probability of this last event will be noted by ( , )u nΨ  and the probability of 
being ruined precisely at time n will be noted by ( , )u nυ . 
Clearly, we have: 
 

0
( , ) ( , )

n

k
u n u kυ

=

Ψ =∑  (17.7) 

and 
 ( , ) ( , ) ( , 1).u n u n u nυ = Ψ −Ψ −  (17.8) 
The probability of not being ruined on [ ]0,n , that is to say after any trial on 

[ ]0,n , will be represented by ( , )u nγ , and of course, we have: 
 ( , ) 1 ( , )u n u nγ = −Ψ . (17.9) 
Probabilities ( , )u nγ  and ( , )u nΨ  are called respectively the non-ruin probability 
and the ruin probability on [ ]0,n  starting at time 0 with an initial fortune - also 
called reserve or equities for insurance companies - of amount u. 
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Now we will see how to express these two probabilities with the aid of events as 
functions of the variables Xn, n=0,1,.. representing the "gain" (positive or 
negative) of the considered player just after the nth trial. 
Starting with x0=u, we can write: 
 ( )( , ) 0, 1,..., 1, 0k nu n P S k n Sυ = > = − < . (17.10) 
If we introduce now the discrete r.v. T defined as follows: 
 { }inf : 0nT n S= < , (17.11) 
we get: 
 ( )( , )u n P T nυ = = , (17.12) 
 ( )( , )u n P T nΨ = ≤ , (17.13) 
 ( )( , )u n P T nγ = > . (17.14) 
One of the major problems in the so-called risk theory is that of giving explicit 
results about these three probabilities. This part of risk theory is called the ruin 
problem and it is equivalent to studying the distribution of the stopping time T. 
It is recalled in Janssen and Manca (2006) that the main concepts in random walk 
theory are those of ladder variables. To be self-contained, let us briefly give the 
following basic Definition 17.2. 
Graphically, ladder epochs and ladder heights are clearly seen on trajectories 
given in a two-dimensional graph where points are designated by the coordinates 
{ }( , ), 0nn S n ≥ . 

Figure 17.1: ladder trajectory 
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In the graph of Figure 17.1, we have joined the points of coordinates 
1( , ), ( 1, )k kk S k S ++  in order to clearly show the evolution of the process. 

For example, in the trajectory of Figure 17.1, we have the strictly ascending 
ladder points ( ) ( ) ( )1 31, , 3, , ,n nS n S n S−− and the strictly descending ladder points 

( ) ( )1 11, , 1,n nn S n S− +− + . 
The next definitions formalise these concepts of ladder variables. We follow the 
presentation of Feller (1971) but without the assumption that x0=0. 
 
Definition 17.2 The first (strict) ascending ladder point ( )1 1, HΓ  is the first term 

of the sequence ( )( ), , 0nn S n >  for which Sn is strictly superior to S0. That is: 

 { } { }1 1 0 1 0 0: : ,..., ,n nn S S S S S Sω ω −Γ = = ≤ ≤ > . (17.15) 
The r.v. 1Γ is called the first strict ladder epoch and the r.v. defined by 
 

11 1 1,H Sξ ξ= = Γ  (17.16) 
is called the first strict ladder height. 
 
The possibly defective bi-dimensional distribution of ( )1 1, HΓ  will be noted by 
 ( ) { }1 1( ) , , 0,nH x P n H x n x += Γ = ≤ > ∈ +∞∪ . (17.17) 
Consequently, we obtain: 
 ( )1 ( )nP n HΓ = = +∞ , (17.18) 

 ( )1
1

( )( ( ))n
n

P H x H x M x
∞

=

≤ = =∑ , (17.19) 

so that both r.v. 1 1, HΓ have the same defect; that is: 
 ( ) ( )1 1 1 ( ).P P H MΓ = ∞ = = ∞ = − ∞  (17.20) 
 
17.3 Classification Of Random Walks 
 
This section is devoted to a very important result known as the classification of 
random walks. Briefly, this result states that only two possibilities exist for the 
asymptotic behaviour of the random walk ( ), 0nS n ≥ . 
Either: 
 ( ) ( )limsup liminf 1n nP S P S= ∞ = = −∞ =  (17.21) 
or: 
 ( )lim or lim 1n nP S S= ∞ = −∞ = . (17.22) 
In the first case, the random walk is called oscillating; in the second, it is said to 
drift to or -+∞ ∞ . 
In this last possibility, we have a.s.  
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 lim nS = +∞  (17.23) 
or 
 lim nS = −∞ . (17.24) 
 
Proposition 17.1 There exist only two types of random walks: 
(1)   the oscillating type: both ascending and descending renewal processes of 
ladder heights are persistent. In this case, the process ( ), 0,1,nS n = …  oscillates 
with probability 1 between −∞  and +∞ , and: 
 ( ) ( )1 1

DE EΓ = Γ = ∞ ; (17.25) 

(2) drift toward ±∞ : in the case of −∞ , the ascending renewal process is 
terminated and the descending renewal process is proper with probability 1. The 
process ( ), 0,1,nS n = …  drifts with probability 1 toward −∞  and reaches a finite 
non-negative maximum. M; moreover: 

 ( )1
1 1 1( ) .

1 1 1 ( )
DE

M
ς

ζ ζ
Γ = ∞ =

− − − ∞
 (17.26) 

And if M is the r.v. defined as 
 0 1max( , ,..., ,...),nM S S S=  (17.27) 
then 
 ( ) (1 ( )) ( )P M x M xς≤ = − ∞ .  (17.28) 
The results are analogous in the case of a drift toward +∞ . 
 
In fact, when the mean μ  of the r.v. Xn, n>1 exists, the strong law of large 
number asserts that, a.s.: 

 lim ,n

n

S
n

μ
→∞

=  (17.29) 

so that we immediately get the following results: 

 
0 lim ,

0 lim .
nn

nn

S

S

μ

μ
→∞

→∞

> ⇒ = +∞

< ⇒ = −∞
 (17.30) 

The next theorem gives the complete relation, including the case 0μ =  which is 
more difficult to treat. 
 
Proposition17.2 If the mean μ  of the r.v. Xn, n>1 exists, then: 
(i)   μ =0 implies that the random walk is oscillating, 
(ii)  μ >0 implies that the random walk drifts toward +∞ , 
(iii) μ <0 implies that the random walk drifts toward -∞ . 
 
In fact, it can also be proved that the converse is true, and so we have: 
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(i)    μ =0 limsup ,liminf 1n nnn
P S S⎛ ⎞⇔ = +∞ = −∞ =⎜ ⎟
⎝ ⎠

, (17.31) 

(ii)   μ >0 ( )lim 1nn
P S

→∞
⇔ = +∞ = ,  (17.32) 

(iii)  μ >0 ( )lim 1nn
P S

→∞
⇔ = −∞ = .  (17.33) 

 
18 DEFECTIVE POSITIVE (J-X) PROCESSES 
 
To extend the main results of classical random walks on semi-Markov random 
walks, it is necessary to introduce now the concepts of defective and terminated 
positive (J,X) processes. 
In fact we will now consider a new type of two-dimensional process always 
defined by a kernel Q but for which the matrix P of the embedded Markov chain  
( , 0)nJ n ≥  could be substochastic, i.e. such that at least the sum of the elements 
of at least one line is strictly inferior to 1. 
To do this, we formally introduce a supplementary state to the set I called state 0 
which is absorbing so that instead of I={1,…,m} as state space, we work now 
with the new state space  
 {0}I I= ∪  (18.1) 
and with a new matrix ( 1) ( 1)m m+ × + , represented by P defined from the given 
substochastic matrix P as follows: 

 

0
1

, , ,

, ,

1 ( 1 ).

ij ij

ok ok
m

j jk j
k

p p i j I

p k I

p p

δ

υ
=

= ∈

= ∈

= − = −∑

 (18.2) 

For the sojourn times, when the embedded MC reaches the absorbing state 0, 
we define the sojourn time as being infinite and so the associated T process 
terminates. 
This leads to the following definition. 
 
Definition 18.1 A defective positive (J,X) process (( , ), 0)n nJ X n ≥  with state 
space I +×  is defined by a vector of initial distributions 0 1( , ,..., )mp p p=p and 
a kernel ( 1) ( 1)m m+ × + ijQ⎡ ⎤= ⎣ ⎦Q of mass functions on the positive half real line 

such that the m m×  sub-matrix  

 
11

1

...
... ... ...

...

mm

m mm

Q Q

Q Q

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

Q  (18.3) 
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is a positive semi-Markov kernel and  
 

 

0
0

00

0

0, ,
( )

, ,

0, ,
( )

1, ,

( ) 0, , .

i
i

i

x
Q x

p x

x
Q x

x

Q x i I x

∈⎧
= ⎨ = +∞⎩

∈⎧
= ⎨ = +∞⎩
= ∈ ∈

 (18.4) 

Moreover, if 
 lim ( ),ij ijx

p Q x
→∞

=  (18.5) 

the matrix  
 ijp⎡ ⎤= ⎣ ⎦P  (18.6) 

is a sub-stochastic matrix satisfying conditions (18.2). 
 
The defective positive (J,X) process satisfies the conditions 
 P(X0=0)=1, a.s., (18.7) 

 0
1

( ) 1, , with 1
m

i i
i

P J i p i m p
=

= = = =∑… , (18.8) 

and for all n>0, j=1,…,m, we have: 
 

1
( , ( , ), 0,..., 1) ( ), . .

nn n k k J jP J j X x J X k n Q x a s
−

= ≤ = − =  (18.9) 
Let us recall that when the process enters for the first time state 0, it will stay 
forever and so we say that the process terminates or is terminated at the first 
entrance time in state 0; so, we can define the unconditional waiting time 
distributions as follows: 

 

1

0 1

( ) ( ) ( ), ,

0, ,
( ) ( 0)

1, ,

i n n ij
j I

n n

H x P X x J i Q x i I

x
H x P X x J

x

−
∈

−

= ≤ = = ∈

∈⎧
= ≤ = = ⎨ = +∞⎩

∑
 (18.10) 

and consequently: 
 1 1( ) ( 0 ) 1 , ,n n n n iP X J i P J J i i Iυ− −= +∞ = = = = = − ∈  (18.11) 
and of course: 
 lim ( ) , .i ix

H x i Iυ
→∞

= ∈  (18.12) 

Now, let ( , )( , )ijT x n i j I∈  be the probability that the (J,X) process terminates at 
step n with Jn=j, before or at time x given that J0=i. 
It is clear that: 

 1 0

( )

( ; ) ( , , 0 ),

             =(1- )( ( )).
ij n n n

n
j ij

T x n P T x J j J J i

Q xυ
+= ≤ = = =

 (18.13) 
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The value of the probability ( )( , )ijT n i j I∈  that the (J,X) process terminates at 
step n with Jn=j, given that J0=i, is  
 ( )( ) lim ( ; ) (1 )n

ij ij ij jx
T n T x n p υ

→∞
= = − , (18.14) 

the value of the probability ( )( )iT n i I∈  that the (J,X) process terminates at step n 
given that J0=i, is  
 ( )( ) ( ) (1 )n

i ij ij j
j I j I

T n T n p υ
∈ ∈

= = −∑ ∑ , (18.15) 

and finally the probability ,( )iT i I∈ , that the (J,X) process terminates given that 
J0=i, is given by 

 ( )

0 0
( ) (1 ).n

i i ij j
n n j I

T T n p υ
∞ ∞

= = ∈

= = −∑ ∑∑  (18.16) 

Replacing the ,j j Iυ ∈ by (18.2), we find the result that: 

 
( 1)
0
( 1)
0

( ) ,

lim .

n
i i

n
i in

T n p

T p

+

+

→∞

=

=
 (18.17) 

Using a result of Chung (1960, p.227), we have that the ( , )iT i I∈ satisfy the 
following linear system: 
 0 , ,i ik k i

k T
T p T p i T

∈

= + ∈∑  (18.18) 

where T is the set of transient states in the imbedded Markov chain. 
 
Definition 18.2 
(i)    A defective positive (J,X) process is i-terminated iff, starting from state i, it 
terminates a.s. 
(ii)   A defective positive (J,X) process defined by the triple (m,p,Q) is p-
terminated iff, starting from initial distribution p, it terminates a.s. 
(iii)  A class of defective positive (J,X) process defined by the doublet (m,Q) is 
terminated iff, starting with any initial distribution p, it is p-terminated. 
 
The next proposition is now obvious. 
 
Proposition 18.1 
(i)    A defective positive (J,X) process is  i-terminated iff Ti=1. 
(ii)   The defective positive (J,X) process (m,p,Q)is  p-terminated iff 1i i

i I
p T

∈

=∑ . 

(iii)  The class defective positive (J,X) process is  terminated iff Ti=1, for all i 
belonging to I. 
 
Remark 18.1 If state 0 is the only recurrent state, then Ti=1 for all i of I and so 
we have a terminal class. 
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In particular, this is the case when for all i of I, 1iυ < . 
For defective positive (J,X) processes, we can introduce the concept of lifetime of 
the process defined by the r.v. M as follows. 
 
Definition 18.3 The lifetime of a defective positive (J,X) process is the r.v. M 
defined as: 
 

10 sup{ : 0}
sup

k

n
n k J

M T
−≤ ≤ ≠

= . (18.19) 

 
It is clear that the conditional distributions of M, having  as support, are given 
by:  

 0
0

( ) ( ) ( ; )i ij
j I n

M x P M x J i T x n
∞

∈ =

= ≤ = =∑∑ . (18.20) 

Using relation (18.13), we get: 

 
0

( )

0

( ) (1 )( ( )),

( ) ( ),

j ij
j I

n

n

P M x J i W x

W x Q x

υ
∈

∞

=

≤ = = −

=

∑

∑
 (18.21) 

a result giving the theoretical explicit form of the lifetime conditional 
distributions. 
A simple probabilistic reasoning proves that the functions Mi, i=1,…,m satisfy 
the following integral equation system of renewal type: 

 
0

( ) (1 ) ( ) ( ),
x

i i j ij
j I

M x M x y dF y i Iυ
∈

= − + − ∈∑∫ , (18.22) 

whose (18.21) is the unique solution. 
In the case of all the d.f. Mi, being proper ( i.e. lim ( ) 1, 1,...,ix

M x i m
→∞

= = ) and if, 

moreover, the following mean lifetimes exist: 

 
0

( ) , 1,..., ,i iM xdM x i m
∞

= < ∞ =∫  (18.23) 

then, from relation (18.22), it follows that they satisfy the system: 

 
1

, 1,..., .
m

i ij j j
j

M p M i mη
=

= + =∑  (18.24) 

 
Example 18.1 Let us consider the class of defective positive (J,X) processes for 
which the matrix ijp⎡ ⎤= ⎣ ⎦P  satisfies: 
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1

0, , ,

1.

ij j

m

j
j

p p i j I

p a
=

= > ∈

= <∑
 (18.25) 

 
In this case, state 0 is the only recurrent state for the Markov matrix P and so, the 
considered class of defective positive (J,X) processes is terminated with: 

 
( )
0

,

1 .
j

n n
i

a

p a

υ =

= −
 (18.26) 

It follows then that all the d.f. Mi are proper and, from (18.21) given by  

 
1

( ) (1 ) ( ( )) ,
m

i ij
j

M x a K x
=

= − ∑  (18.27) 

a result giving a theorem of Feller (1971). 
Here, the linear system (18.24) has the following explicit form: 

 

1 1 1

2 1 2

1 1

1

( )
( )

( 1)
( )

, 1,..., .
( 1) (1 )

i m

i

i

m i m
i m

m
j

j

p p
p

p
p p

M i m
p

δ η
δ η

δ η

=

− −
− −

−
− −

= =
− −∑

 (18.28) 

If moreover, the considered class here is of order 0, this means we have as 
supplementary condition on sojourn conditional distributions: 
 , , 1,..., ,ij jF F i j m= =  (18.29) 
then from (18.28) the Mi functions do not depend on i and the common value 
M of the mean lifetimes iM  is given by 

 

1

,
1

m

j
j

M
p

η

=

=
−∑

 (18.30) 

where 

 
1 0

, ( ), 1,..., .
m

j j j j
j

p b b tdF t j mη
∞

=

= = =∑ ∫  (18.31) 

The special case m=1 is already given by Feller (1966). 
 
19. SEMI-MARKOV RANDOM WALKS 
 
Let us consider a (J,X) process (( , ), 0)n nJ X n ≥ . 
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It can be seen that the process (Xn) defines a random walk on the real line starting 
at X0=0, a.s. but contrary to the classical random walks, the successive steps Xn 
are no longer independent but satisfy a semi-Markovian dependence, useful for a 
lot of applications for example in risk theory, queues and so on. 
The position of the particle at the nth step is given by the r.v. 

 
1

, 1,2,...
n

n k
k

S X n
=

= =∑ . (19.1) 

From now on, we will suppose that the imbedded Markov chain ( , 0)nJ n ≥ is 
irreducible and so recurrent. 
For j belonging to I fixed, let us introduce once more the process 

( )( , 0)j
nr n ≥ called the process of recurrence indices as follows: 

 
( )

0
( ) ( ) ( )

1 1

0,

sup{ 0 : , , }, 0.

j

j j j
n n l n

k

r

r k k r J j r l k n− −

=

= ≥ > ≠ < < >
 (19.2) 

From section 14, we know that the mean recurrence times given by : 
 ( )( ) ( )

1 , 0,j j
jj n nm E r r n j I+= − > ∈  (19.3) 

and are here finite. 
With the renewal process ( ) ( )

1( , 0),j j
n nr r n+ − > we can associate a classical random 

walk, i.e. a sequence of i.i.d. random variables: 
 ( )( , 0)j

lU l >  (19.4) 
with 
 

 
( )

1

( )

( )

1

.
j

l

j
l

r
j

l n
n r

U X
+

= +

= ∑  (19.5) 

From Proposition 15.1 and the Remark 15.1, it follows that these random 
variables have a mean μ  given by 

 
1

1 ,
m

jj i i
ij

μ π η
π =

= ∑  (19.6) 

so that they are positive or negative for all j, depending on the sign of μ  
defined by 

 
1

m

i i
i

μ π η
+

=∑ . (19.7) 

As we already know, following Spitzer (1957) and Feller (1971) we will say that 
a random walk drifts to +∞  (resp. −∞ ) iff 

 
(limsup{ : ( ) 0}) 0,

( (liminf{ : ( ) 0}) 0)

n
n

nn

P S

P S

ω ω

ω ω

< =

> =
 (19.8) 

and that it is oscillating iff 
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 (limsup{ : ( ) 0}) (liminf{ : ( ) 0}) 1.n nnn
P S P Sω ω ω ω< = > =  (19.9) 

We then get the following theorem concerning the asymptotic behaviour of the 
semi-Markov random walk (Sn). 
 
Proposition 19.1 If the semi-Markov random walk (Sn) has an irreducible M.C. 
and all the unconditional means ,i i Iη ∈ are finite and, then if μ  is null and if for 
one j, 
 ( )

1( 0) 1,jP U = <  (19.10) 
then the semi-Markov random walk is oscillating and if μ  is positive (resp. 
negative) then the semi-Markov random walk drifts to +∞  (resp. )−∞ . 
 
20 DISTRIBUTION OF THE SUPREMUM FOR  
SEMI-MARKOV RANDOM WALKS 
 
Let us consider a semi-Markov random walk ( )nS  with an irreducible M.C. and 
all the unconditional means ,i i Iη ∈ finite. We are now interested in the 
distribution of the following supremum: 
 0 1sup{ , ,...}.M S S=  (20.1) 
For μ >0, under the assumptions of Proposition 19.1, it follows from this 
proposition that for all i of I and all real x: 
 0( ) 0.P M x J i≤ = =  (20.2) 
This is also true for μ =0, as the positive (J,X) process (( , ), 0)n nH nς >  is regular 
(see Pyke (1961a)) meaning that it has only a finite number of transitions on any 
time interval. 
Now for μ <0, from relation (5.21), we get: 
 0( ) ( ) (1 ) ( ),i j ij

j

M x P M x J i M xυ= ≤ = = −∑  (20.3) 

where ijM⎡ ⎤= ⎣ ⎦M is the matrix of renewal functions for the process 

(( , ), 0)n nH nς > . 
From Proposition 7.2 of Chapter 5 of Janssen and Manca (2006), we know that: 
 lim ( ) 1, .ix

M x i I
→∞

= ∀ ∈  (20.4) 

We also see that  
 (0) 1 , .i iM i Iυ= − ∀ ∈  (20.5) 
Nevertheless, to be useful, the “explicit” form (8.3) requires us to know the 
kernel of the positive (J,X) process (( , ), 0)n nH nς >  or the functions Hij given by 
relation (7.8). Unfortunately, this is very difficult except in very particular cases. 
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To avoid that, we can start from the following integral equations system of 
Wiener-Hopf type given from an immediate probabilistic reasoning: 

 
( ) ( ), 0,

( )
0, 0.

x

j ij
ji

M x s dQ x x
M x

x
−∞

⎧
− ≥⎪= ⎨

⎪ <⎩

∑ ∫  (20.6) 

For m=1, we get the classical Wiener-Hopf equation: 

 
( ) ( ), 0,

( )
0, 0.

x

M x s dQ x x
M x

x
−∞

⎧
− ≥⎪= ⎨

⎪ <⎩

∫  (20.7) 

Janssen (1970) proved that this integral equations system of Wiener-Hopf type 
has a unique P-solution, meaning a vector 1( ,..., )nM M of distribution functions 
satisfying system (20.6). 
 
21 NON-HOMOGENEOUS MARKOV AND  
SEMI-MARKOV PROCESSES 
 
To finish this chapter, let us recall the basic definitions and results for the non-
homogeneous case for which time itself has influence on the transition 
probabilities. Due to the importance of applications, in particular in insurance, we 
carefully develop some special cases such as non-homogeneous Markov 
processes. 
 
21.1 GENERAL DEFINITIONS 
 
To begin with, we present the general definition of non-homogeneous semi-
Markov processes (in short NHSMP) including as particular cases, non-
homogeneous Markov processes (in short NHMP) in continuous time, non-
homogeneous Markov chains (in short NHMC) in discrete time and non-
homogeneous renewal processes (in short NHRP). 
We follow the original presentation given by Janssen and De Dominicis (1984). 
 
21.1.1 Completely Non-Homogeneous Semi-Markov 
Processes  
 
As usual, let us consider a system S having m possible states constituting the set 
I={1,…,m} defined on the probability space ( ), , PΩ ℑ . 



 
 
 
 
 
 
Markov renewal processes                                                                                  125 

 

Definition 21.1 The two-dimensional process in discrete time ( )( , ), 0n nJ X n ≥  

with values in I +× such that: 

 
1

0 0

( 1)
1 1

0
0

, 0, . ., ,

( , ( , ), 1) ( , ),

, ,

0, , . .

n

n
n n k k J j n n

n

n k
k

J i X a s i I

P J j X x J X k n Q T T x

j I x

T T X a s

−

−
− −

+

=

= = ∈

= ≤ ≤ − = +

∈ ∈

= =∑

 (21.1) 

is called a completely non-homogeneous semi-Markov chain (in short CNHSMC) 
of kernel Q(s,t)= ( )( 1) ( , ), 1n s t n− ≥Q . 

 
Consequently, the past influences the evolution of the process by the presence of 

1nT −  and n in (21.1). 
 
Definition 21.2 The sequence Q= ( )( 1) ( , ), 1n s t n− ≥Q  of m m×  matrices of 

measurable functions of [ ]0 0,1+ +× ×  where: 

 ( 1) ( 1)( , ) ( , )n n
ijs t Q s t− −⎡ ⎤= ⎣ ⎦Q  (21.2) 

and satisfies the following conditions: 

 

( 1)

( 1)

1

( 1) ( 1)

(i) 0, , , , : ( , ) 0,

(ii)  0, , : ( , ) 1,

with ( , ) lim ( , ),

n
ij

n
n

ij
j

n n
ij ijt

n i j I t s t s Q s t

n i I s Q s

Q s Q s t

+ −

+ −

=

− −

→∞

∀ > ∀ ∈ ∀ ∈ ≤ ⇒ =

∀ > ∀ ∈ ∀ ∈ ∞ =

∞ =

∑  (21.3) 

is called a completely non-homogeneous semi-Markov (in short CNHSM) kernel. 
 
Clearly, for all fixed s, ( 1) ( ,.)n

ijQ s− is a mass function, null for t s≤ . 
 
Definition 21.3 For all 0, , , ,i j I n s t +∈ ∈ ∈ , the functions 
( 1) ( )n

ijp s− , ( 1) ( 1)( , ), ( , )n n
ij ijH s t F s t− −  are defined as follows: 

 

( 1) ( 1)

( 1) ( 1)

( 1)
1 1

( 1) ( 1)
( 1)

( 1)

( ) ( , ),

( , ) ( , ),
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n n
ij ij

n n
ij ij

j

n
ij

n n
ij ij n

ijn
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p s Q s

H s t Q s t

U s U t p s
F s t Q s t

p s
p s

− −

− −

−

− −
−

−

= ∞

=

⎧ =
⎪

= ⎨
>⎪

⎩

∑  (21.4) 
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Working as in section 3, it is easy to prove that we still have the following 
probabilistic meaning: 

 

( 1)
1 1

( 1)
1 1 1 1

( 1)
1 1

1 1

( ) ( , ) ,

( , ) ( , )( ( , )),

( , ) ( , , )

( ( , , )).

n
ij n n n

n
i n n n n n n

n
ij n n n n

n n n n

p s P J j J i T s

H s t P X t s J i T s P T t J i T s

F s t P X t s J i J j T s

P T t J i J j T s

−
− −

−
− − − −

−
− −

− −

= = = =

= ≤ − = = = ≤ = =

= ≤ − = = =

= ≤ = = =

(21.5) 

In matrix notation, using the element by element product (Scott product) defined 
as: 

 
,

, ,

ij ij

ij ij

a b

a b

⎡ ⎤⋅ = ⎣ ⎦
⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

A B

A B
 (21.6) 

we will write: 

 

( 1) ( 1)

( 1) ( 1)

( 1) ( 1) ( 1)

( , ) ( , ) ,

( ) ( ) ,

( , ) ( ) ( , ).

n n
ij

n n
ij

n n n

s t F s t

s p s

s t s s t

− −

− −

− − −

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦
= ⋅

F

P

Q P F

 (21.7) 

We can now give the following definitions similar to the classical or homogenous 
semi-Markov theory presented in section 5. 
 
Definition 21.4 The counting process ( ( ), 0)N t t ≥ defined as 
 { }( ) sup : n

n
N t n T t= ≤  (21.8) 

is called the associated counting process with the CNHSM kernel Q. 
 
Definition 21.5 The process ( )( , ), 0n nJ T n ≥  is called a completely non- 
homogeneous Markov additive process or Markov renewal process (in short 
CNHMAP or CNHMRP). 
 
Definition 21.6 The process ( ( ), 0)Z Z t t= ≥  defined as 

 ( ) , ( ) ,
( )

, ( ) ,
N tJ N t

Z t
N tθ

< ∞⎧
= ⎨ < ∞⎩

 (21.9) 

where θ  is a new state added to I, is called the completely non-homogeneous 
semi-Markov process (in short CNHSMP) of kernel Q. 
 
Definition 21.7 The random variable L defined as 
 { }inf : ( )L t Z t θ= =  (21.10) 
is called the lifetime of the CNHSMP Z. 
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Definition 21.8 The associated counting process ( ( ), 0)N t t ≥ or the CNHSMP 
Z= ( ( ), 0)Z t t ≥  of kernel Q is explosive iff 
 , . .L a s= ∞  (21.11) 
and non-explosive iff 
 , . .L a s< ∞  (21.12) 
 
For very general counting processes, De Vylder and Haezendonck (1980) have 
given necessary and sufficient conditions for non-explosion. Here, in general, we 
always assume non-explosive processes. 
For the two-dimensional process (( , ), 0)n nJ T n ≥ , we have the following result: 

 
( )
( )

(0) (1)
1 1 0 0

(1) (0) (2)
2 2 0 0 0

, , 0 (0, )( ( )),

, , 0 ( , ) (0, )( ( )),

ij ij

t

kj ij ij
k

P J j T t J i T Q t Q t

P J j T t J i T Q x t Q dx Q t

= ≤ = = = =

= ≤ = = = =∑∫
(21.13) 

and in general 

 
( ) ( 1) (1)

0 0 0

( )

, , 0 ( , ) ( )

( ( )), 1).

t n
n n kj ij

k

n
ij

P J j T t J i T Q x t Q dx

Q t n

−= ≤ = = =

= >

∑∫
 (21.14) 

Using matrix notation, we may write for two m m×  matrices of mass functions 
A(t), B(t): 

 
0 0

1
( ) ( ) ( ) ( ) ,

nt t

kj ik
k

t d t B z d A z
=

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
∑∫ ∫A B  (21.15) 

and so relations (21.14) can be written under the matrix form: 

 

( ) ( 1) (1)

0

( ) ( )

(1) (0)

( ) ( , ) ( ), 1,

with

( ) ( ) , 1,

( ) (0, ) .

tn n

n n
ij

ij

t z t d x n

t Q t n

t Q t

−= >

⎡ ⎤= ≥⎣ ⎦
⎡ ⎤= ⎣ ⎦

∫Q Q Q

Q

Q

 (21.16) 

In the particular class of classical SMP, the relation (21.16) gives the n-fold 
convolution of the SM kernel Q. 
Another very important distribution is the marginal distribution of the Z process 
as it gives the state occupied by the system S at time t. 
Let us introduce the following probabilities: 
 ( )( ) ( , ) ( ) (0) , ( ) ( ), ( ) , , , 0.n

ij s t P Z t j Z i N s N s N s n i j I nφ = = = − < = ∈ ≥ (21.17) 
The conditioning means that nT s=  and that there exists a transition at time s 
such that the new state occupied after the transition is i. 
Clearly, these probabilities satisfy the following relations: 
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 ( ) ( ) ( ) ( 1)( , ) (1 ( , )) ( , ) ( , ), , .
tn n n n

ij ij i kj iks
k I

s t H s t u t Q s du i j Iφ δ φ −

∈

= − + ∈∑∫  (21.18) 

From relation (21.1), it is clear that we have: 
 

1

( 1)
1( ( , ), 1) ( ), . .

n

n
n k k J j nP J j J T k n p T a s

−

−
−= ≤ − =  (21.19) 

It follows that the process ( ), 0nJ n ≥  can be viewed as a conditional multiple 
Markov chain; this means that, given the sequence ( ), 0nT n ≥ , each transition 
from 1n nJ J− →  obeys a non-homogeneous Markov chain of kernel 
( 1)

1( )n
nP T−
− (see Definition 21.3). 

 
Definition 21.9 The conditional multiple Markov chain ( ), 0nJ n ≥  is called the 
imbedded multiple MC. 
 
21.1.2 Special Cases 
 
Let us point out that Definition 21.2 is quite general as indeed it is non-
homogeneous both for the time s and for the number of transitions n, this last one 
giving the possibility to model epidemiological phenomena  such as AIDS for 
example (see in Janssen and Manca (2006)) the example of Polya processes and 
semi-Markov extensions). 
This extreme generality gives importance to the following particular cases. 
 
(i) Non-Homogeneous Markov Additive Process And Semi-Markov Process 
 
If in the sequel Q= ( )( 1) ( , ), 1n s t n− ≥Q , we have: 

 ( 1) ( , ) ( , ), 1, ,n s t s t n s t− = ≥ <Q Q  (21.20) 
that is Q independent of n, then the kernel Q is called a non-homogeneous semi-
Markov kernel (in short NHSMK) defining a non-homogeneous Markov additive  
process (in short NHMAP) ( )( , ), 0n nJ T n ≥  and a non-homogeneous semi-
Markov process (in short NHSMP) ( ( ), 0).Z Z t t= ≥  
This family was introduced in a different way by Hoem (1972). 
It is clear that the relation (21.20) means that the sequences  
 ( 1) ( 1)( , ) ( , ), ( ) ( ) 0n ns t s t s s n− −= = ∀ ≥F F P P  (21.21) 
are independent of n or equivalently that 
 ( , ) ( ) ( , ).s t s s t= ⋅Q P F  (21.22) 
Let us point out that, in this case, relations (21.18) become: 

 ( , ) (1 ( , )) ( , ) ( , ), , .
t

ij ij i ij iks
k

s t H s t u t Q s du i j Iφ δ φ= − + ∈∑∫  (21.23) 

If moreover, we have  
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 ( ) , 0,s s= ≥P P  (21.24) 
then the kernel Q is called a partially non-homogeneous semi-Markov kernel (in 
short PNHSMK) defining a partially non-homogeneous Markov additive  process 
(in short PNHMAP) ( )( , ), 0n nJ T n ≥  and a partially non-homogeneous semi-
Markov process (in short PNHSMP) ( ( ), 0).Z Z t t= ≥  
This family was introduced in a different way by Hoem (1972). 
 
(ii) Non-Homogeneous MC 
 
If the sequences ( 1) ( ), 0n s s− ∀ ≥P  are independent of s, then ( ), 0nJ n ≥ is a 
classical non-homogeneous MC (in short NHMC) 
 
(iii) Homogeneous Markov Additive Process 
 
A PNHSMK Q such that 
 ( , ) ( ), , 0, 0,F s t F t s s t t s= − ≥ − ≥  (21.25) 
is of course a classical homogeneous SM kernel as in section 2. 
 
(iv) Non-Homogeneous Renewal Process 
 
For m=1, The CNHMRP of kernel Q is given by 
 ( 1)( , ) ( ( , )), , 0, 0ns t s t s t t s−= > − ≥Q F  (21.26) 
and characterizes the sequence ( , 0)nX n ≥  with, as in (21.1), 

 
0

( 1)
1 1

0
0

0, . .,

( , 1) ( , ), ,

0, , . .

n
n k n n

n

n k
k

X a s

P X x X k n F T T x x

T T X a s

− +
− −

=

=

≤ ≤ − = + ∈

= =∑

 (21.27) 

In this case, the process ( , 0)nX n ≥  is called a completely non-homogeneous 
dependent renewal process (in short CNHDRP) of kernel Q. 
If moreover, 
 ( 1) ( 1)( , ) ( ), , 0, 0, 1,n nF s t F t s s t t s n− −= − > − ≥ ≥  (21.28) 
it follows that 

 
0

( 1)

0, . .,

( , 1) ( ), , 1n
n k

X a s

P X x X k n F x x n− +

=

≤ ≤ − = ∈ ≥
 (21.29) 

and so the process ( , 0)nX n ≥  is a sequence of t independent r.v. called a 
completely non-homogeneous  renewal process (in short CNHRP) of kernel F. 
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Remark 21.1 In the non-homogeneous case, it is much more difficult to obtain 
asymptotic results (see for example Benevento (1986), Thorisson (1986), 
Papadopoulou-Vassiliou (1994)) for interesting theoretical results). That is not so 
dramatic as that we can say non-homogeneous models are used for modelling 
transient situations and not asymptotic ones and that is why we personally think 
that all attention must be given to the construction of numerical methods for 
example to be able to solve the non-homogeneous integral equations system 
(21.23); this is done in the next chapter. 
However, let us mention that, for the particular case of non-homogeneous 
Markov chains, there exist more asymptotic results (see for example Isaacson and 
Madsen (1976). 
 



 

 

Chapter 4 
 
DISCRETE TIME AND REWARD SMP AND 
THEIR NUMERICAL TREATMENT 
 
1 DISCRETE TIME SEMI-MARKOV PROCESSES 
 
1.1 Purpose 
 
This chapter will present both discrete time homogeneous (DTHSMP) and 
non-homogeneous (DTNHSMP) semi-Markov processes and the numerical 
methods to be used for applying semi-Markov models in real-life problems, 
furthermore the Semi-Markov ReWard Processes (SMRWP) will be presented. 
Although, in general, time in real-life problems is continuous, the real 
observation of the considered system is almost always made in discrete time even 
if the used time unit may in some cases be very small. 
The choice of this time unit depends on what we observe and what we wish to 
study. 
For example if we are studying the random evolution of the earthquake activity 
in a tectonic fracture zone, then it could be observed with a unitary time scale of 
ten years. If we are studying the behaviour of a disablement resulting from a job 
related illness, the unitary time could be one year, and so on.  
So it results that the phenomenon of time evolution is continuous, nevertheless 
usually, the observations are discrete in time.  
Consequently, if we construct a model to be fitted with real data, in our opinion, 
it would be better to begin with discrete time models. 
 
1.2 DTSMP Definition 
 
Though DTHSMP and DTNHSMP definitions are similar to the continuous ones, 
for the sake of completeness, we will recall these definitions using directly the 
terminology used for discrete time models. 
Let I={1, 2, …, m} be the state space and let { }, , PΩ ℑ be a probability space. Let 
us also define the following random variables:  
 :nJ IΩ → ,       :nT Ω → . (1.1) 
 
Definition 1.1 The process ( ,  )n nJ T  is a discrete time homogeneous Markov 
renewal process or a discrete time non-homogeneous Markov renewal process if 
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the kernels Q associated with the process are defined respectively in the 
following way: 
 [ ] ( )[ ]1 1( ) ,  - | , ,ij n n n nQ t P J j T T t J i i j I t+ += = = ≤ = ∈ ∈Q , (1.2) 
 [ ] ( )[ ]1 1( , ) ,  | , , , ,ij n n n nQ s t P J j T t J i T s i j I s t+ += = = ≤ = = ∈ ∈Q . (1.3) 
 
As in the continuous time case, it results that for the homogeneous case, we 
define: 
 [ ] lim ( ) ; , ,ij ijt

p Q t i j I t
→∞

⎡ ⎤= = ∈ ∈⎣ ⎦P . (1.4) 

For the non-homogeneous case, we obtain: 
 [ ]( ) lim ( , ) ; , , ,ij ijt

p s Q s t i j I s t
→∞

⎡ ⎤= = ∈ ∈⎣ ⎦P , (1.5) 

P being the transition matrix of the embedded Markov chain of the process.  
Furthermore it is necessary to introduce the probability that the process will leave 
the state i before or at a time t: 
 [ ] ( )[ ]1( ) - | ,i n n nH t P T T t J i+= = ≤ =H  (1.6) 
 [ ] ( )[ ]1( , )  | , .i n n nH s t P T t J i T s+= = ≤ = =H  (1.7) 
From the results of Chapter 3, we know that obviously: 

 
1 1

( ) ( ) and  ( , ) ( , )
m m

i ij i ij
j j

H t Q t H s t Q s t
= =

= =∑ ∑ . (1.8) 

The following probabilities only have sense in the discrete time case and to be 
concise, we present first the definition for the homogeneous case and then for the 
non-homogeneous one. 
 
Definition 1.2 Matrix B is defined as follows: 
 [ ] ( )[ ]1 1( ) ,  - | ,ij n n n nb t P J j T T t J i+ += = = = =B  (1.9) 
 [ ] ( )[ ]1 1( , ) ,  | , .ij n n n nb s t P J j T t J i T s+ += = = = = =B  (1.10) 
 
From Definition 1.1 it results that: 

 
(0) 0 if 0,

1 if 1,2,...,
ij

ij

Q t
b (t) Q (t) Q (t ) tij ij

= =⎧⎪= ⎨ − − =⎪⎩
 (1.11)  

 
( , ) 0 if ,

( , ) ( , ) ( , 1) if .
ij

ij

Q s s t s
b s t Q s t Q s t t sij ij

= =⎧⎪= ⎨ − − >⎪⎩
 (1.12) 

 
Definition 1.3 The discrete time conditional distribution functions of the waiting 
times given the present and  the next states, are given by: 
 [ ] ( )[ ]1 1( ) - | , ,ij n n n nF t P T T t J i J j+ += = ≤ = =F  (1.13) 
 [ ] ( )[ ]1 1( , ) | , , .ij n n n nF s t P T t J i J j T s+ += = ≤ = = =F  (1.14) 
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Obviously the related probabilities can be obtained by means of the following 
formulas: 

 
1

( ) if 0,
( )  

( )        if 0,
ij ij ij

ij

Q t  /  p p
F tij U t p

≠⎧
= ⎨ =⎩

 (1.15) 

 
1

( , ) ( ) if ( ) 0,
( , )  

( , )             if ( ) 0,
ij ij ij

ij

Q s t  /  p s p s
F s tij U s t p s

≠⎧
= ⎨ =⎩

 (1.16) 

where 1 1( ) ( , ) 1 ,U t U s t s t= = ∀ . 
Now, we can introduce the discrete time semi-Markov process ( )( ),Z Z t t= ∈  
where { }( )( ) , ( ) max :N t nZ t J N t n T t= = ≤  representing the state occupied by the 
process at time t.  
For i,j=1,…,m, the transition probabilities are defined in the following way: 
 ( )0( ) Pij tt   Z   j | Z   iφ = = =  (1.17) 
for the homogeneous case; for the non-homogeneous case, we have: 
 ( )( , ) P .ij t ss t   Z   j | Z   iφ = = =  (1.18) 
They are obtained by solving the following evolution equations: 

 
1 1

( ) (1 ( )) ( ) ( ),
m t

ij ij i i jt H t b tβ β
β ϑ

φ δ ϑ φ ϑ
= =

= − + −∑∑  (1.19) 

 
1 1

( , ) (1 ( , )) ( , ) ( , ),
m t

ij ij i i j
s

s t H s t b s tβ β
β ϑ

φ δ ϑ φ ϑ
= = +

= − +∑ ∑  (1.20) 

where, as usual, δij represents the Kronecker symbol. 
 
2 NUMERICAL TREATMENT OF SMP 
 
In this section, we present the numerical solutions of the evolution equation of 
continuous time semi-Markov process in homogeneous and non-homogeneous 
cases. 
The proposed approach uses a general quadrature method and we will prove that 
the numerical solution tends to the solution of the evolution equation of the 
continuous time HSMP. 
It will also be shown that, using a very particular quadrature formula for the 
numerical solution of evolution equations of continuous time processes, it is 
possible to obtain the evolution equation of discrete time processes.  
These results were obtained in Corradi et al (2004) and Janssen-Manca (2001a) 
generalizing the classical results on integral equation numerical solutions (see 
Baker (1977)). 
Let us consider a continuous time SMP of kernel Q supposed to be differentiable. 
First of all we write down the evolution equations of the SMP (see Chapter 3, 
relation (10.2) and (21.18)) as follows: 
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1 0

( ) (1 ( )) ( ) ( )
tm

ij ij i i jt H t Q t dβ β
β

φ δ ϑ φ ϑ ϑ
=

= − + −∑∫ , (2.1) 

 
1

( , ) (1 ( , )) ( , ) ( , )
tm

ij ij i i j
s

s t H s t Q s t dβ β
β

φ δ ϑ φ ϑ ϑ
=

= − +∑∫ , (2.2) 

where ijQ  represents the derivative respect to time of ijQ . 
Each generic quadrature formula can be written as (see Evans (1993)): 

 ,
00

( ) ( ),
kh k

k l
l

f t dt w f lh
=

≅ ∑∫  (2.3) 

where h is the step length, ,, , , k lk N k N w≤ ∈  are the weights related to 
the quadrature formula (10.1); they are functions of both the end point and the 
point in which we compute the function value. 
If we set: 
 ( ) (1 ( )) ,ij ij ijd t H t δ= −  (2.4) 
 ( , ) (1 ( , )) ,ij ij ijd s t H s t δ= −  (2.5)  
we obtain respectively: 

 
1 0

( ) ( ) ( ) ( ) ,
m k

ij ij k lj il
l

kh d kh w kh h Q hτ
τ

φ φ τ τ
= =

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
∑ ∑  (2.6) 

 , ,
1

( , ) ( , ) ( , ) ( , )
m k

ij ij u k lj il
l u

uh kh d uh kh w h kh Q uh hτ
τ

φ φ τ τ
= =

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
∑ ∑ , (2.7) 

where h is the step length, w the weights related to the quadrature formulas, 
0 , , , ,u k N u k N≤ ≤ ≤ ∈  such that and [0, ]Nh Y Y=  is the integration interval. 
Now we proceed showing only the homogeneous case but all the results given for 
the homogeneous case hold in both cases. The reader interested in acquiring 
more details can refer to Janssen and Manca (2001a) and Corradi et al (2004). 
We suppose we have already computed: 

 

1 1 1 1

2 2 2 2

3 3 3 3

(0) ( ) (2 ) (( 1) )
(0) ( ) (2 ) (( 1) )
(0) ( ) (2 ) (( 1) )

(0) ( ) (2 ) (( 1) )

j j j j

j j j j

j j j j

mj mj mj mj

h h k h
h h k h
h h k h

h h k h

φ φ φ φ
φ φ φ φ
φ φ φ φ

φ φ φ φ

−
−
−

−

 (2.8) 

where 1 k N≤ ≤ and  
 (0) (0) (1 (0)) , 1, , , 1, ,ij ij i ijH i m j mφ φ δ= = − = =… … . (2.9) 
Then from (2.6) it follows that for a fixed j and 1, ,i m∀ = … : 

0
1 1 1

( ) ( ) (0) ( ) ( ) ( )
m m k

ij k lj il ij k lj il
l l

kh w kh Q d kh w kh h Q hτ
τ

φ φ φ τ τ
= = =

⎛ ⎞
− = + −⎜ ⎟

⎝ ⎠
∑ ∑ ∑ . (2.10) 
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From relation (2.8), we get 

 

1 0 1 1
1

2 0 2 2
1

0
1

( ) ( ) (0)

( ) ( ) (0)

( ) ( ) (0)

m

j k lj l
l
m

j k lj l
l

m

mj k lj ml m
l

kh w kh Q c

kh w kh Q c

kh w kh Q c

φ φ

φ φ

φ φ

=

=

=

− =

− =

− =

∑

∑

∑

 (2.11) 

where, for convenience, the mici ,,1, …=  represent the second member of 
(2.10). 
The linear system (2.11) in the unknowns mikhij ,,1),(~ …=φ  admits solution if 
the coefficient matrix is non-singular. 
The following theorem holds: 
 
Theorem 2.1 Assume that  
 [ ] [ ]: 0, , : 0,ij ijQ Y Yφ→ →  (2.12) 
and  { }1, , ,q N N∈ ∈… , such that  YNh ≤ . 
Furthermore let 
 Nkkhkhh ijij

k
ij ,,2,1,0),()(~)( …=−= φφξ  (2.13) 

where )(khijφ  is the solution of (2.1) and )(~ khijφ  is the solution of  (2.6) and 

 .)()(
1
∑
=

=
m

i

k
ij

k hh ξη  (2.14) 

Furthermore, let: 

 ∞<==
≤≤≤ h

w
ww ku

Nku
N

0
max , (2.15) 

 
01 1 0

( ) ( ) ( ) ( ) ( )
m m kkhk

ij lj il ku lj il
l l u

t h kh Q d w kh uh Q uhφ τ τ τ φ
= = =

⎡ ⎤
= − − −⎢ ⎥

⎣ ⎦
∑ ∑ ∑∫ , (2.16) 

 ,)()(
1
∑
=

=
m

i

k
ij

k hthσ  (2.17) 

 ),(max)()( hhh k
Nhq

N σττ
≤≤

==  (2.18) 

 
1

0
( ) ( ).

q
u

u
h hξ η

−

=
= ∑  (2.19) 

Then, if 1( )ijQ t c≤  for [0, ],t Y∈  we have: 
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 11

1 1

( ) ( )( ) exp , , 1, ,
1 1

NNk

N N

mw c khh mhw c hh k q q N
mhw c mhw c

τ ξη + ⎛ ⎞≤ = +⎜ ⎟− −⎝ ⎠
…  (2.20) 

given that  1, , , 1Nm h w c <   
 
Proof This theorem is a particular case of the one given in Janssen and Manca 
(2001a).   
 
Remark 2.1 In general, equation (2.6) cannot be solved exactly. Then if the 
values ˆ ( )ij khφ  give the approximate solution of (2.6) (for 0≥k ), then  

 
1 0

ˆ ˆ( ) ( ) ( ) ( )
m k

k
ij ij k lj il ij

l
kh d kh w kh h Q hτ

τ
φ φ τ τ ς

= =

⎛ ⎞
= + − +⎜ ⎟

⎝ ⎠
∑ ∑ , (2.21) 

if we suppose that: ˆ (0) (0) (0).ij ij ijdφ φ= =   
Then setting: 
 ˆ( ) ( ) ( )k

ij ij ijh kh khπ φ φ= −  (2.22) 
it follows that 
 
 { }0 ˆ( ) (0) (0), , 1, , .ij ij ijh i j mπ φ φ= − ∀ ∈ …  (2.23) 
 
Using relations (2.6) (2.21) and (2.22), we get for 1≥k , 

 
1 0

( ) ( ) ( ) .
m k

k k k
ij k il lj ij

l
h w Q h hτ

τ
τ

π τ π ς−

= =

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ ∑  (2.24) 

Using (2.15) and summing up with respect to the first index, it results that: 

 1
1 1 0 1

( ) ( ) .
m m k m

k k
lj N lj ij

l l l
h m w h c hτ

τ
π π ς

= = = =
≤ +∑ ∑∑ ∑  (2.25) 

If we set: 

 
1

( ) ( ) ,
m

k k
lj

l
h hη π

=

= ∑  and 
1

,
m

k k
ij

l
ρ ς

=

= ∑  (2.26) 

it follows that: 

 1
0

( ) ( ).
k

k k
Nh mw hc hτ

τ
η ρ η

=

≤ + ∑  (2.27) 

Given the following positions: 

 11 0
max , ( ) ( )

k
k k

N N Nk N
h mw hc hτ

τ
τ ρ η τ η

≤ ≤ =

= ≤ + ∑ , (2.28) 

that is: 

 ( )
1

1 1
0

1 ( ) ( )
k

k u
N N N

u
mw hc h mw hc hη τ η

−

=

− ≤ + ∑ , (2.29) 

it follows finally  that: 
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 1

1 1
( ) exp , 1, ,

1 1
NNk

N N

m w c k h
h k N

mh w c mh w c
τη ⎛ ⎞≤ =⎜ ⎟− −⎝ ⎠

… . (2.30)   

 
Remark 2.2 In the non-homogeneous case, as s is fixed in the system of integral 
equations (2.2), τ is the only parameter, so for each [ ]0,s Y∈  the result of 
Theorem 2.1 holds. 
 
3. DTSMP AND SMP NUMERICAL SOLUTIONS 
 
In the previous section, we gave general formulas for the discretization of 
continuous time HSMP and NHSMP with a finite number of states. With the 
most simple quadrature method (rectangle formula), we get: 

 
1 1

( ) ( ) ( ) ( ) ,
m k

ij ij lj il
l

kh d kh h kh h Q h
τ

φ φ τ τ
= =

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
∑ ∑  (3.1) 

 
1 1

( , ) ( , ) ( , ) ( , ) .
m k

ij ij lj il
l u

uh kh d uh kh h h kh Q uh h
τ

φ φ τ τ
= = +

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
∑ ∑  (3.2) 

Here, the sum on the time starts from 1 (u+1) as, the probability of changing state 
with a waiting time 0 is 0. Substituting in relations (3.1) and (3.2) the differential 
with the increment and with h=1, it results that: 

 ( )
1 1

( ) ( ) ( ) ( ) ( 1) ,
m k

ij ij lj il il
l

k d k k Q Q
τ

φ φ τ τ τ
= =

⎛ ⎞
≅ + − − −⎜ ⎟

⎝ ⎠
∑ ∑  (3.3) 

 ( )
1 1

( , ) ( , ) ( , ) ( , ) ( , 1) .
m k

ij ij lj il il
l u

u k d u k k Q u Q u
τ

φ φ τ τ τ
= = +

⎛ ⎞
≅ + − −⎜ ⎟

⎝ ⎠
∑ ∑  (3.4) 

Furthermore, taking into account relations (1.9) and (1.10) it results that 

 
1 1

( ) ( ) ( ) ( )
m k

ij ij lj il
l

k d k k b
τ

φ φ τ τ
= =

≅ + −∑∑ , (3.5) 

 
1 1

( , ) ( , ) ( , ) ( , ).
m k

ij ij lj il
l u

u k d u k k b u
τ

φ φ τ τ
= = +

≅ + ∑ ∑  (3.6) 

In this way, the evolution equations of the (DTHSMP) and (DTNHSMP) as 
defined in relations (1.19) and (1.20) are obtained: 

 
1 1

( ) ( ) ( ) ( ),
m k

ij ij lj il
l

k d k k b
τ

φ φ τ τ
= =

= + −∑∑  (3.7) 

 
1 1

( , ) ( , ) ( , ) ( , ).
m k

ij ij lj il
l u

u k d u k k b u
τ

φ φ τ τ
= = +

= +∑ ∑  (3.8) 

If the discretization step is h, then relations (3.7) and (3.8) become: 

 
1 1

( ) ( ) ( ) (( ) )
m k

h h h h
ij ij il lj

l
kh d kh b h k h

τ
φ τ φ τ

= =

= + −∑∑ , (3.9) 
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1 1

( , ) ( , ) ( , ) ( , ).
m k

h h h h
ij ij il lj

l u
uh kh d uh kh b uh h h kh

τ
φ τ φ τ

= = +

= +∑ ∑  (3.10) 

Now the equations (3.9) and (3.10) can be rewritten in matrix form as follows: 

 
1

( ) ( ) ( ) (( ) ),
k

h h h hkh kh h k h
τ

τ τ
=

= + ∗ −∑Φ D B Φ  (3.11) 

 
1

( , ) ( , ) ( , ) ( , ),
k

h h h h

u
uh kh uh kh uh h h kh

τ
τ τ

= +

= + ∗∑Φ D B Φ  (3.12) 

or equivalently: 

 
1

( ) ( ) (( ) ) ( ),
k

h h h hkh h k h kh
τ

τ τ
=

− ∗ − =∑Φ B Φ D  (3.13) 

 
1

( , ) ( , ) ( , ) ( , ), , .
k

h h h h

u
uh kh h kh h kh uh kh k u k

τ
τ τ

= +

− ∗ = ∈ ≤∑Φ B Φ D  (3.14) 

Taking into account that k ∈ , both equations (3.13) and (3.14) can be written 
more compactly as: 
 .h h h∗ =U Φ D  (3.15) 
For the homogeneous case, it results that: 

 
( )

(2 ) ( )
(3 ) (2 ) ( )

h

h h h

h h h

h
h h
h h h

⎡ ⎤
⎢ ⎥−⎢ ⎥

= − −⎢ ⎥
⎢ ⎥− − −⎢ ⎥
⎢ ⎥⎣ ⎦

I 0 0 0
B I 0 0

U B B I 0
B B B I

, (3.16) 

 

(0)
( )

(2 )
(3 )

h

h

h h

h

h
h
h

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Φ
Φ

Φ Φ
Φ

, 

(0)
( )

(2 )
(3 )

h

h

h h

h

h
h
h

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

D
D

D D
D

  

and in the non-homogeneous case: 

 

(0, ) (0,2 ) (0,3 )
( ,2 ) ( ,3 )

(2 ,3 )

h h h

h h

h h

h h h
h h h h

h h

− − −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

I B B B
0 I B B

U 0 0 I B
0 0 0 I

, (3.17) 



 
 
 
 
 
 

Discrete time SMP and numerical solution                                                         139 

 

 

(0, ) (0,2 ) (0,3 )
( ,2 ) ( ,3 )

.(2 ,3 )

h h h

h h

h h

h h h
h h h h

h h

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

I D D D
0 I D D

D 0 0 I D
0 0 0 I

  

The following theorem holds for both homogeneous and non-homogeneous 
cases. 
 
Theorem 3.1 Equations (3.13) and (3.14) admit a unique solution. 
 
Proof The determinant of matrix  hU  is absolutely convergent (Riesz (1913)); 
more precisely det( ) 1h =U  and consequently matrix hU is invertible.      
 
In the homogenous case equation (3.13) can be seen as an infinite linear system 
with an infinite number of unknowns. It ensues from Theorem 3.1 that the 
system is solvable.  
To solve such a system it is usually necessary to apply the truncation method 
Riesz (1913); but in our case, it is very simple to find the solution.  
Obviously, (0)h =Φ I  and, once (0)hΦ  is known we get: 
 ( ) ( ) (0) ( )h h h hh h h= ∗ +Φ B Φ D . (3.18) 
Once (0), ( ), , ( )h h hh khΦ Φ Φ…  are known, then: 

 
1

1
(( 1) ) ( ) (( 1 ) ) (( 1) )

k
h h h hk h h k h k h

τ
τ τ

+

=

+ = ∗ + − + +∑Φ B Φ D  (3.19) 

and it is not necessary to apply the truncation method. Furthermore, these results 
are obtained without any matrix inversion. 
As in the homogeneous case, equation (3.14) can be seen as an infinite linear 
system with an infinite number of unknowns, but the non-homogeneous matrix 
equation is different from the homogeneous one because the coefficient matrix is 
upper triangular in the non-homogeneous case and lower triangular in the 
homogeneous.  
Also in this case the truncation method should not be applied. In the 
homogeneous case this result is trivial. In the non-homogeneous case the result is 
not so immediate. We report, with more precision, the following result given in 
and Janssen and Manca (2001a).  
 
Proposition 3.1 The solution of the infinite order linear system (3.14) can be 
given explicitly step by step. 
 
Proof For the proof see Janssen-Manca (2001a)  
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Remark 3.1 Here it should also be mentioned that the upper triangularity of the 
coefficient block matrix and the fact that the matrices on the main diagonal are 
identity matrices implies that the results are obtained with no matrix inversion.  
The following two theorems hold for both the homogeneous and non-
homogeneous cases but only the homogeneous results will be given. 
 
A straightforward proof of the randomness of the matrix hΦ  is possible by 
exploiting the following: 
 
Theorem 3.2 The matrices ( )h khΦ  are stochastic. 
 
Proof The result is true for (0)h =Φ I. We suppose that it is true for 

1, , kτ = … .We have to check what happens under these hypotheses for k+1. 
From (1.11) the equation (3.19) becomes: 

 
( ) ( )( )

1

1
(( 1) ) ( 1) (( 1 ) )

(( 1) ).

k
h h h h

h

k h h h k h

k h
τ

τ τ τ
+

=

+ = − − + −

+ +

∑Φ Q Q Φ

D
 (3.20) 

To prove that (( 1) )h k h+Φ  is stochastic we have to show that: 

 
1

(( 1) ) 1, 1, , .
m

h
ij

j
k h i mφ

=

+ = =∑ …  (3.21) 

An element of (3.20) is given by: 

 

1

1 1

1

1 1

(( 1) ) (( 1) ) ( ) (( 1 ) )

(( 1) ) (( 1 ) ).

k m
h h h h
ij ij il lj

l

k m
h h
il lj

l

k h d k h Q h k h

Q h k h

τ

τ

φ τ φ τ

τ φ τ

+

= =

+

= =

+ = + + + −

− − + −

∑∑

∑∑
 (3.22) 

Summing up with respect to j and taking into account relations (2.4), (1.8), (1.19) 
and the inductive hypothesis, the following result is obtained:  

 

1

1 1 1 1 1

1

1 1 1

(( 1) ) 1 (( 1) ) ( ) (( 1 ) )

(( 1) ) (( 1 ) ) 1.

m m k m m
h h h h
ij ij il lj

j j l j

k m m
h h
il lj

l j

k h Q k h Q h k h

Q h k h

τ

τ

φ τ φ τ

τ φ τ

+

= = = = =

+

= = =

+ = − + + + −

− − + − =

∑ ∑ ∑∑ ∑

∑∑ ∑
(3.23) 

           
 
Now let Z be a continuous time HSMP with Φ  as evolution equation and { }nT  
as sequence of the state change times. 
If we set: 
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 nh
n

TT h
h

⎢ ⎥= ⎢ ⎥⎣ ⎦
 (3.24) 

and 
 ( )h

nZ t J=   if  1
h h

n nT t T +≤ < , (3.25) 
then hZ  is a DTHSMP with evolution equations given by: 

 
1 1

( ) ( ) ( ) (( ) )
m k

h h h h
ij ij il lj

l
kh d kh b h k h

τ
φ τ φ τ

= =

= + −∑∑  (3.26) 

and it is defined on the same probability space { }, , PΩ ℑ  of Z. 
Given Ω∈ω  the following result holds P-almost. 
 
Theorem 3.3 The hZ  process converges to Z  for 0h →  in the Skorohod 
topology1.  
 
Proof It must be shown that 0T∀ >  there exists a time rescaling sequence 
{ }hλ where hλ  is a continuous, strictly increasing and surjective function from 
[0, )+∞  to [0, )+∞  such that: 
 sup ( ) 0h

t T
t tλ

≤
− →    if   0h →  (3.27) 

and 
 ( )sup ( ) ( ) 0h h

t T
Z t Z tλ

≤
− →    if   0h → ; (3.28) 

(see Ethier and Kurtz (1986)). 
Obviously, 
 nT → +∞     if    n → +∞ ,  (3.29) 
then it is sufficient to verify that the proposition holds for , .nT T n= ∀   
If we set: 
 1 0min , 0h h h

k kl k n
h T T T−≤ ≤
< − = , (3.30) 

let hλ  be the linear function that transforms the intervals [ ]1,k kT T−  into 
[ ]1,h h

k kT T−   with 1 k n≤ ≤  and 0 0T = , given by: 
 ( ) ( ),h n

h n nt T t T t Tλ = + − ≥ . (3.31) 
Then { }hλ  verifies the proposition's conditions and: 
 ( ( )) ( ) 0 .h h

nZ t Z t t Tλ − = ∀ ≤  (3.32) 
Then hZ  converges to Z in the Skorohod topology with probability 1 and 
therefore, in particular, hZ  converges in law, i.e. in the weak sense of stochastic 
processes.   
                                                 
1 Skorokhod topology is the topology defined on the set of trajectories of stochastic 
processes. For more details see (Billingsley (1968)). 
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Remark 3.2 The weak convergence of stochastic processes is in reality the weak 
convergence of their laws, where the laws are probability measures induced from 
the processes on the space of their trajectories. In this case it is the space of right 
continuous functions with left limits, in which the Skorokhod topology  holds. 
 
Finally it is to be observed that the hλ  sequence depends on nT  by means of 
(3.30). 
 
4 SOLUTION OF DTHSMP AND DTNHSMP IN THE 
TRANSIENT CASE: A TRANSPORTATION EXAMPLE 
 
4.1 Principle Of The Solution 
 
Generally speaking it is clear that, for the purpose of application, it is more 
worthwhile to solve systems (3.13) and (3.14) in a finite time horizon, which 
means that the process is solved in the transient case. 
In the following, an algorithm useful for solving both evolution equations is 
briefly presented.  
First of all, an epoch T is fixed and, in this light, equation (3.15) for both cases 
becomes: 
 T T T∗ =U Φ D . (4.1) 
The algorithms solve the linear system (4.1), in the sense that for known matrices 
T F  and P, it determines the matrix of the unknown TΦ  by means of two 
iterative procedures. For the algorithms it is not necessary to compute the U 
matrix, but it is enough to construct the matrices B whose elements are defined 
respectively in (1.11) and (1.12). 
The variables involved in the algorithms are: 
 
 
INPUTS: 
m, T, P (embedded M.C.), T F (Matrix of the increasing distribution function of 
waiting times) 
 
RESULTS: 
 T Q , T B , T S , T D , TΦ  
 
STEPS: 
Reads m,  T 
Reads P 
Reads T F  
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Constructs T Q  
Constructs T B  
Constructs T S  
Constructs T D  
Solves the system and finds TΦ  
 
The steps are very general and hold in both cases. As we already said, the main 
difference is given by the fact that in the homogeneous case the matrices are 
lower triangular and upper triangular in the non-homogeneous case, see (3.16) 
and (3.17).  
For a complete description of algorithms respectively in homogeneous and non-
homogeneous cases, we refer to Corradi et al (2004) and Janssen-Manca (2001a). 
 
4.2 Semi-Markov Transportation Example 
 
4.2.1 Homogeneous Case 
 
In this first example of a semi-Markov model, we extend to a semi-Markov 
environment the transportation problem presented in section 9.6 of Chapter 2. 
We consider that a taxicab driver will work for eight hours. So we will work in 
the transient case within 32 time periods, which means that a period is a time 
interval of 15 minutes. In this way we can consider the full working time of a 
driver.  
In this model, ( )ij tφ  represents the probability that a driver who is in the state i 
will be in the state j after a time t and we have to solve the evolution equation. 
This example is really simple so all the steps that are necessary to solve the 
DTHSMP could be shown. 
The input is: 
m = 3, 
T = 32. 
The matrix P was given in the formula (9.108) of Chapter 2 but in real 
application it could be constructed by data in the following way. 
We are supposed to know all the runs that were driven in one month by all the 
taxicab drivers, so we know for each run the starting zone, the arriving zone and 
the course duration. 
We refer to our case study, so we have three states, and we should construct the 
transition matrix P by the known data. We could construct a matrix A where 

ija = number of runs from the zone i to the zone j in the month. 
Then, it follows that: 
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 3 .ij
ij

ik
k

a
p

a
=

∑
 (4.2) 

The matrix [ ]( )ijF t=F , the discrete time increasing probability distribution of 
the waiting time in each state i given that the next state to be successively 
occupied is j, should be constructed by the data.  
The way to construct these d.f. by the data is the following. 
We would construct for each i and j the related d.f.  
 (0), (1), (2), , (32)ij ij ij ijF F F F… .  (4.3) 
From our data we compute the vector  
 ( (1), (2), , (32), (33))ij ij ij ij ijv v v v=v …  (4.4) 
where (1)ijv  represents the number of all the runs that have a duration (including 
also the waiting time of the taxi driver before beginning the run) less than or 
equal to 15 minutes, (2)ijv  the number of all the courses that have a duration 
greater than 15 minutes and less than or equal to 30 minutes and so on.  
In (33)ijv  there will be the number of all the runs from i and j that have a 
duration larger than eight hours if any. 
From the vector ijv  we can construct the vector ijw : 

1
( ) ( ) 1, ,33

t

ij ij
s

w t v s t
=

= =∑ … . (4.5) 

So, we finally get the elements of the matrix F: 
( )

(0) 0, ( ) , 1, ,32
(33)

ij
ij ij

ij

w t
F F t t

w
= = = … . (4.6) 

To illustrate this method proposed for real data, we will here construct artifical 
data and find matrix F by means of pseudorandom generator numbers.  
Our example is very simple (only three states) but with 32 time periods,  
reporting of all the matrices involved in the computation will be too long and so 
we will report for each matrix the time periods 1, 5, 10, 20, 30 and 32.  
We get the following results: 
 

Matrix F  
F(1) F(5) F(10) 

0.0470 0.0396 0.0514 0.1835 0.1299 0.2349 0.2863 0.2581 0.3524 
0.0200 0.0449 0.0009 0.1478 0.0847 0.0910 0.3083 0.2648 0.2924 
0.0456 0.0168 0.0325 0.1314 0.1472 0.1106 0.2828 0.2491 0.3183 

F(20) F(30) F(32) 
0.5288 0.5628 0.6047 0.8268 0.8377 0.9236 0.8468 0.8574 0.9938 
0.5877 0.4767 0.5842 0.8943 0.7982 0.8997 0.9423 0.8272 0.9382 
0.5500 0.4956 0.6617 0.8721 0.8131 0.8376 0.9307 0.8478 0.9028 
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Note that, always, F(0)=0 because there are no movements in a time 0, and 
F(32)<1 because it is the last time period and therefore a truncated d.f. 
After the computation of matrix F, we can compute the kernel Q as follows (see 
relation (1.15)) 
 ( ) ( )t t= ⋅Q F P , (4.7)  
where the symbol ⋅means matrix product element by element. 

Matrix Q  
Q(1) Q(5) Q(10) 

0.0235 0.0158 0.0051 0.0918 0.0520 0.0235 0.1432 0.1032 0.0352 
0.0060 0.0269 0.0001 0.0443 0.0508 0.0091 0.0925 0.1589 0.0292 
0.0091 0.0017 0.0227 0.0263 0.0147 0.0775 0.0566 0.0249 0.2228 

Q(20) Q(30) Q(32) 
0.2644 0.2251 0.0605 0.4134 0.3351 0.0924 0.4234 0.3430 0.0994 
0.1763 0.2860 0.0584 0.2683 0.4789 0.0900 0.2827 0.4963 0.0938 
0.1100 0.0496 0.4632 0.1744 0.0813 0.5863 0.1861 0.0848 0.6319 
 
The next matrix to be computed is the matrix B using the following result: 

 
if 0,

( )
( ) ( 1) if 0.

t
t

t t t
=⎧= ⎨ − − >⎩

0
B

Q Q
 (4.8) 

Matrix B  
B(1) B(5) B(10) 

0.0235 0.0158 0.0052 0.0194 0.0061 0.0046 0.0061 0.0079 0.0032 
0.0060 0.0269 0.0001 0.0029 0.0153 0.0009 0.0095 0.0303 0.0040 
0.0091 0.0017 0.0227 0.0110 0.0023 0.0257 0.0009 0.0006 0.0331 

B(20) B(30) B(32) 
0.0222 0.0151 0.0000 0.0083 0.0097 0.0034 0.0062 0.0059 0.0053 
0.0033 0.0138 0.0045 0.0067 0.0251 0.0048 0.0128 0.0047 0.0034 
0.0038 0.0011 0.0020 0.0115 0.0045 0.0040 0.0078 0.0013 0.0240 
 
Let us just mention that the 0 in position 1,3 (20)b  is a numerical zero in the sense 
that rounding this number at the fourth decimal gives 0. 
Then, we have to compute the estimation of matrix H, whose elements are the 
following, see relation (1.8): 

 

1

0 if ,
( )

( ) if .
m

ij
ik

k

i j
H t

Q t i j
=

≠⎧
⎪= ⎨

=⎪⎩∑
 (4.9) 
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0 0.0330 0 0 0.1043 0 0 0.2806 0 
0 0 0.0335 0 0 0.1184 0 0 0.3043 

H(20) H(30) H(32) 
0.5500 0 0 0.8408 0 0 0.8658 0 0 

0 0.5207 0 0 0.8372 0 0 0.8728 0 
0 0 0.6228 0 0 0.8421 0 0 0.9028 

 
We know that these  elements represent the probability to leave the state i in a 
period less than or equal to the period t, and so have sense only in the main 
diagonal of each submatrix. 
The next matrix D,whose elements represent the probability of remaining in the 
state for t periods, is given by 
 ( ) ( )t t= −D I H . (4.10) 
We get: 

Matrix D  
D(1) D(5) D(10) 

0.9555 0 0 0.8328 0 0 0.7184 0 0 
0 0.9670 0 0 0.8957 0 0 0.7194 0 
0 0 0.9665 0 0 0.8816 0 0 0.6957 

D(20) D(30) D(32) 
0.4500 0 0 0.1592 0 0 0.1342 0 0 

0 0.4793 0 0 0.1628 0 0 0.1272 0 
0 0 0.3772 0 0 0.1579 0 0 0.0972 

 
The matrix we look for, that is Φ , is the solution of the evolution equation of the 
DTHSMP.  
Here, ( )ij tφ  represents the probability that a taxicab driver being at time 0 in 
zone i will be after t periods, in the state j. 
From the results given below, any row of the submatrix ( )tΦ  is indeed a 
probability distribution. 
The results are: 

Matrix Φ  
Φ (1) Φ (5) Φ (10) 

0.9790 0.0158 0.0052 0.9228 0.0530 0.0242 0.8553 0.1065 0.0382 
0.0060 0.9939 0.0001 0.0437 0.9465 0.0098 0.0916 0.8767 0.0317 
0.0091 0.0017 0.9892 0.0264 0.0154 0.9582 0.0582 0.0288 0.9130 

Φ (20) Φ (30) Φ (32) 
0.6973 0.2320 0.0707 0.5337 0.3490 0.1173 0.5132 0.3587 0.1281 
0.1767 0.7548 0.0685 0.2745 0.6116 0.1139 0.2902 0.5882 0.1216 
0.1220 0.0686 0.8094 0.2039 0.1278 0.6683 0.2196 0.1386 0.6418 
 

Matrix H  
H(1) H(5) H(10) 

0.0445 0 0 0.1672 0 0 0.2816 0 0 
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4.2.2 Non-Homogeneous Case 
 
As above in the homogoneous case, we consider that a taxicab driver will work 
for eight hours with time intervals of 15 minutes and so we will consider the 
transient case within 32 time periods for which ( , )ij s tφ  represents the probability 
that a driver being in state i at time s will be in state j at time t. 
Though this example is one of the simplest that can be done, it will clearly 
confirm that non-homogeneity, as already shown, gives some intrinsic 
supplementary difficulties.  
Also, we will try to show all the steps that are necessary to understand the 
development of a DTNHSMP. 
This time, the input is: 
m = 3, 
T = 32, 
and the non-homogeneous Markov chain, reported in the following table. 
 

P(0) P(5) P(10) 
0.3 0.4 0.3 0.39 0.35 0.26 0.49 0.3 0.21 
0.4 0.2 0.4 0.35 0.32 0.33 0.3 0.42 0.28 

0.32 0.38 0.3 0.28 0.33 0.39 0.23 0.28 0.49 
P(20) P(25) P(29) 

0.54 0.35 0.11 0.5 0.4 0.1 0.5 0.4 0.1 
0.3 0.62 0.08 0.3 0.6 0.1 0.3 0.6 0.1 

0.23 0.18 0.59 0.24 0.13 0.63 0.2 0.1 0.7 
 

Other input should be the matrix [ ]( , )ijF s t=F , the discrete time increasing 
probability distribution of the waiting time in each state i, given that the arrival 
time in the state i was at time s and that the next state to be successively occupied 
is j. 
From the data, we can construct these distribution functions, as in the 
homogeneous cases. 
To compute for each s, i and j the related d.f.,  
 ( , ), ( , 1), ( , 2), , ( ,32), 32,ij ij ij ijF s s F s s F s s F s s+ + ≤…   (4.11) 
we first introduce the following quantities: 
 ( ) ( ( , 1), ( , 2), , ( ,32), ( ,33))ij ij ij ij ijs v s s v s s v s v s= + +v … . (4.12) 

( , 1)ijv s s +  gives the number of all the runs for which the taxi driver arrived at 
time s in the state i and finished the new course in the state j in a time less than or 
equal to 15 minutes (including the waiting time before beginning the new 
course).  
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Similarly ( , 2)ijv s s +  gives the number of all the runs for which the taxi driver 
arrived at time s in the state i and finished the new run in the state j in a time 
more than 15 minutes and less than or equal to 30 minutes and so on.  
Finally, ( ,32)ijv s  gives the number of all the courses from i and j that began at 
the arrival time s and finished after 7.45 hours but within the eight hours of the 
turn and ( ,33)ijv s  the number of taxi drivers who arrived at time s in i and who 
will finish the next course in j, but after the eight hours.  
It is important to remark that in the semi-Markov environment the stopping time 
of the taxidriver before the beginning of another run is included in the duration of 
the course. 
From the vector ( )ij sv  we can construct the vector ( )ij sw : 

 
1

( , ) ( , ) 1, ,33
t

ij ij
h

w s t v s s h t s
=

= + = +∑ … . (4.13) 

We finally obtain the elements of the matrix F given by: 

 
( , )

( , ) 0, ( , ) , 1, ,32.
( ,33)

ij
ij ij

ij

w s t
F s s F s t t s

w s
= = = + …  (4.14) 

In place of real data not available here, we construct the F matrix by means of 
pseudorandom generator numbers as for the homogoneous case given above.  
We can then multiply matrices F and P and obtain the matrix Q with the relation 
 ( , ) ( ) ( , )s t s s t= ⋅Q P F . (4.15)  
The next matrix to be computed is the matrix B; from the result: 

 
0 if ,

( , )
( , ) ( , 1) if ,

t s
s t

s t s t t s
≤⎧= ⎨ − − >⎩

B
Q Q

 (4.16) 

we get: 
Using the relation 

 

1

0 if ,
( , )

( , ) if ,
m

ij
ik

k

i j
H s t

Q s t i j
=

≠⎧
⎪= ⎨

=⎪⎩∑
 (4.17) 

we finally obtain the matrix H. 
The elements of this matrix represent the probability of leaving the state i in the 
time that goes from s to t. They have sense only on the main diagonal of each 
submatrix. 
The matrix D representing the probabilites of remaining in the state from the time 
s up to the time t is obtained in the following way: 
 ( , ) ( , )s t s t= −D I H . (4.18) 
For the last step, we have to compute the matrix Φ , the solution of the evolution 
equation of the DTHSMP whose element ( , )ij s tφ  represents the probability that a 
taxicab driver being at time s in the zone i will be at time t in state j.  
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Here, it can be verified that any row of the submatrix ( , )s tΦ  is indeed a 
probability distribution. 

 
Matrix Φ  

(0,1)Φ  (0,10)Φ  (0,20)Φ  
0.9696 0.0255 0.0049 0.7936 0.1307 0.0757 0.6196 0.2089 0.1715 
0.0123 0.9686 0.0191 0.1149 0.7845 0.1006 0.2473 0.5132 0.2395 
0.0115 0.0046 0.9839 0.0862 0.1053 0.8085 0.2002 0.2142 0.5856 

(5,6)Φ  (5,15)Φ  (5,25)Φ  
0.9898 0.0084 0.0018 0.7812 0.1290 0.0898 0.5840 0.2421 0.1739 
0.0213 0.9685 0.0102 0.1374 0.7324 0.1302 0.2551 0.5364 0.2085 
0.0164 0.0157 0.9679 0.1153 0.1147 0.7700 0.2069 0.2375 0.5556 

(10,11)Φ  (10,21)Φ  (10,31)Φ  
0.9672 0.0242 0.0086 0.7275 0.1620 0.1105 0.5121 0.2971 0.1908 
0.0201 0.9646 0.0153 0.1415 0.7095 0.1490 0.3241 0.4443 0.2316 
0.0055 0.0057 0.9888 0.1254 0.1206 0.7540 0.2678 0.2726 0.4596 

(20,21)Φ  (20,26)Φ  (20,31)Φ  
0.9892 0.0034 0.0074 0.7926 0.1583 0.0491 0.5561 0.3145 0.1294 
0.0186 0.9718 0.0096 0.1277 0.8174 0.0549 0.2883 0.6075 0.1042 
0.0289 0.0095 0.9616 0.1287 0.0781 0.7932 0.2420 0.2192 0.5388 

(25,26)Φ  (25,28)Φ  (25,32)Φ  
0.9724 0.0096 0.0180 0.7794 0.1644 0.0562 0.4170 0.4360 0.1470 
0.0715 0.9141 0.0144 0.1079 0.8313 0.0608 0.2924 0.5670 0.1406 
0.0252 0.0009 0.9739 0.0552 0.0277 0.9171 0.2422 0.2194 0.5384 

(29,30)Φ  (29,31)Φ  (29,32)Φ  
0.8975 0.0661 0.0364 0.7097 0.2161 0.0742 0.4500 0.4351 0.1149 
0.0246 0.9532 0.0222 0.1911 0.7463 0.0626 0.2827 0.5960 0.1213 
0.1264 0.0287 0.8449 0.1378 0.0702 0.7920 0.1824 0.1675 0.6501 

 
In the non-homogeneous case we report only the final results, the interested 
reader can find them in the internet site given in the introduction. 
 
5 CONTINUOUS AND DISCRETE TIME REWARD 
PROCESSES 
 
In this part we will present undiscounted and discounted semi-Markov reward 
processes.  
Reward processes can be seen as a class of stochastic processes. In the non- 
homogeneous case it is possible to write more than 200 different evolution 
equations of Semi-Markov ReWard Processes (SMRWP). We develop only three 
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cases, the simplest and the most general. For a wider approach the reader can 
refer  to Janssen-Manca (2006). 
 
5.1 Classification And Notation 
 
5.1.1 Classification Of Reward Processes 
 
In this book we will apply semi-Markov processes mainly in finance, insurance 
and reliability problems. In all these fields, the association of a sum of money to 
a state of the system and to a state transition assumes great relevance. In general, 
this can be done by attaching a reward structure to the process.  
This structure can be seen as a random variable associated with the state 
occupancies and transitions (Howard (1971) vol. 2).  
The rewards can be of different kinds, but in this book we will, because of our 
kind of applications, consider only amounts of money. These amounts can be 
positive, if for the system they can be seen as a benefit and negative if they can 
be considered as a cost. 
The reward processes can be seen as classes of stochastic processes that we can 
classify in different cases. The following tables report the classification of the 
SMRWP. 
Process classification 

Homogeneous 
Non-Homogeneous 
 
Continuous time 
Discrete time 
 
Non-discounted 

Fixed interest rate 
Homogeneous interest law Discounted Variable interest rate Non-homogeneous interest 
law 

Reward classification 
Time fixed rewards 

Homogeneous rewards Time variable rewards Non-homogeneous rewards 
 
Transition (impulse) rewards 

Immediate Discrete time Due 
 

Permanence (rate) rewards 

Independent on next transition 
Dependent on next transition 
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We will not present permanence rewards that depend on the next transition 
because in financial and insurance environments they do not have sense. 
In general the distinction between homogeneous and non-homogeneous cases is 
done for stochastic processes. Also an interest rate law can be defined as 
homogeneous if the discount factor is a function only of the length of the 
financial operation, non-homogeneous if the discount factor takes into account 
also the initial time of operation, not only the duration. 
In the same way, rewards can be fixed in time, can depend only on the duration 
or can be non-homogeneous in time.  
We will use the following notation: 

, ( ), ( , )i i it s tψ ψ ψ : represent rewards given for permanence in state i; the first is 
time fixed, the second changes because of time and the third represents a time 
non-homogeneous permanence reward. 

, ( ), ( , )ij ij ijt s tγ γ γ : represent the three different kinds of rewards given for the 
transition from state i to state j (impulse reward).  
In the discrete time case, the immediate case means that the reward is paid at the 
end of each period; in the due case the reward is paid at the beginning of the 
period. The impulse rewards γ  represent lump sums that are paid at the 
transition instant.  
 
5.1.2 Financial Parameters 
 
To study the process with discounting, let us recall some basic results for 
computing present values of amounts of money, annuities and also the related 
notation.  
For more details, refer to Volpe di Prignano (1985) or Kellison (1991). 
 
Fixed time interest rate: 

1(1 )r e δν − −= + = : represents the one-period discount factor, where r is the 
interest rate and δ  the corresponding intensity, 

1 1 1; , ;
1

t t t

t r t r t
v r ea a d a

r d r

δ

δ
ν

δ

−− − −
= = = =

+
 represent the present value of 

respectively a unitary annuity-immediate, an annuity-due and a continuous time 
annuity, 

1 1 1, ,r ra a a
r d δ δ∞ ∞ ∞= = =  represent the present value of infinite time unitary 

annuities, also called perpetuities. 
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Time variable interest rate: 
Now we suppose that the interest rates are variable and depend on the time 
period.: 

0

( )
1

1
( ) (1 ) , ( )

k

k d

h
h

k r k e
δ τ τ

ν ν
−

−

=

∫
= + =∏  represent the k-period discount factor at 

time 0 respectively in discrete and continuous time. They give, at time 0, the 
discounted value of one monetary unit to be paid at the end of period k, 

1

1 0 0

( ) ( ), ( ) ( ), ( ) ( )
tt t

i i i
k k

k k k k dν ψ ν ψ ψ ϑ ν ϑ ϑ
−

= =
∑ ∑ ∫  represent the present value 

respectively of an annuity-immediate, an annuity-due and a continuous annuity 
with variable rewards in the time and variable interest rate on a time horizon t. 
The infinite rates cases are given by the limit to ∞  of the three relations. They 
converge depending on the values of andψ ν . 

( )
1

1
( , ) (1 ) , ( , )

t

s

t d

h
h s

s t r s t e
δ τ τ

ν ν
−

−

= +

∫
= + =∏  represent the t s−  period discount 

factor at time s, with homogeneous interest rates giving, at time s, the discounted 
value of one monetary unit to be paid at the end of period k, respectively in 
discrete and continuous time, 

1

1
( , ) ( , ), ( , ) ( , ), ( , ) ( , )

tt t

i i i
k s k s s

s k s k s k s k s s dν ψ ν ψ ψ ϑ ν ϑ ϑ
−

= + =
∑ ∑ ∫  represent the present 

value at time s respectively of an annuity-immediate, an annuity-due and a 
continuous annuity paid on the time interval ( ],s t with non-homogeneous 
rewards and variable interest rate.  

( , )
1

1
( , ) (1 ) , ( , ) s

t s d

s h
h s

s t r s e

ϑ

δ τ τ

ν ν ϑ
−

−

= +

∫
= + =∏ represent the t s−  period discount 

factors at time s, with non-homogeneous interest rates, 
1

1
( , ) ( , ), ( , ) ( , ), ( , ) ( , )

tt t

i i i
k s k s s

s k s k s k s k s s dν ψ ν ψ ψ ϑ ν ϑ ϑ
−

= + =
∑ ∑ ∫  represent the present 

value at time s respectively of an annuity-immediate, an annuity-due and a 
continuous time annuity paid on the time interval ( ],s t with non-homogeneous 
rewards and non-homogeneous interest rate.  
In the following sections, we will show that annuities are strongly related to the 
semi-Markov reward processes; for the Markov case see Janssen-Manca (2006).  
A reward structure can be considered as a very general structure that, given a 
financial and economic meaning can be very useful in stochastic modelling. 
For example, this behaviour is particularly efficient to construct models useful to 
follow the dynamic evolution of insurance problems. In this case, the 
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permanence in a state usually involves the payment of a premium or the receipt 
of a claim. Furthermore often the transition from one state to another induces 
some other cost or benefit.  
 
5.2 Undiscounted SMRWP 
 
For each given case we will present the immediate, the due and the continuous 
cases, both in homogeneous and non-homogeneous environments. We will give 
first the simplest case (only with permanence rewards and fixed rate of interest 
and rewards) and after the general ones. The same cases will be given for 
discounted processes. 
 
5.2.1 Fixed Permanence Rewards 
 
We assume that: 
a) rewards are fixed in time, 
b) rewards are given only for permanence in the state. 
First we present the immediate case. 

( )iV t  ( ( , )iV s t ) represents the Mean Total Reward (MTR) paid or received in t 
periods (from time s to time t), given that at time 0 (at time s)  the system was in 
state i.  
At time 1 the evolution equation for the homogeneous immediate case is given 
by the following relation: 

 
( )

1

1 1 0
(1) 1 (1) (1) ( ) (1 )

m m

i i i ik i ik k
k k

V H b b V
ϑ

ψ ψ ϑ ϑ
= = =

= − + + −∑ ∑∑ . (5.1) 

To have a good understanding of the evolution equation, let us first say that 
relations (1.8) and (1.11) imply that (1) (1)ij ijb Q=  and so relation (5.1) can be 
decomposed in the following way: 

 

1

1 1 1 0
(1) 1 (1) (1) ( ) (1 )

m m m

i ik i ik i ik k
k k k

V Q Q Q V
ϑ

ψ ψ ϑ ϑ
= = = =

⎛ ⎞
= − + + −⎜ ⎟
⎝ ⎠

∑ ∑ ∑∑  (5.2) 

where  (0) 0, and (0) 0 ,k ikV k Q i k= ∀ = ∀ , and so: 

 
(1) .i iV ψ=  (5.3) 

For the next step, we can write that: 

 

2 2

1 1 1 1
(2) (1 ( )) 2 ( ) ( ) (2 ).

m m

i i i ik i ik k
k k

V H t b b V
ϑ ϑ

ψ ϑ ψ ϑ ϑ ϑ
= = = =

= − + + −∑∑ ∑∑   (5.4) 

This time, two rewards must be paid but in different ways. We divide the 
evolution equation in three parts.  
- the term (1 ( )) 2i iH t ψ−  represents the rewards obtained without state changes; 
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- the expression 
2

1 1
( )

m

ik i
k

b
ϑ

ϑ ψ ϑ
= =
∑∑  gives the rewards obtained before the change of 

state. As (0) 0 ,ikb i k= ∀ , the sum on ϑ  begins from 1; 

- the double sum 
2

1 1
( ) (2 )

m

ik k
k

b V
ϑ

ϑ ϑ
= =

−∑∑  gives the rewards  paid or earned after the 

transitions. 
For time t, we get the following general result: 

 
1 1 1 1

( ) (1 ( )) ( ) ( ) ( ).
m t m t

i i i ik i ik k
k k

V t H t t b b V t
ϑ ϑ

ψ ϑ ψ ϑ ϑ ϑ
= = = =

= − + + −∑∑ ∑∑  (5.5) 

The general formula in the non-homogeneous case is: 

 

1 1

1 1

( , ) (1 ( , ))( ) ( , )( )

( , ) ( , ).

m t

i i i ik i
k s

m t

ik k
k s

V s t H s t t s b s s

b s V t

ϑ

ϑ

ψ ϑ ϑ ψ

ϑ ϑ

= = +

= = +

= − − + −

+

∑ ∑

∑ ∑
 (5.6) 

In this simple case the due and the immediate processes correspond. So we report 
only the continuous cases. 

 ( )
0 01 1

( ) 1 ( ) ( ) ( ) ( )
m mt t

i i i i ik ik k
k k

V t H t t Q d Q V t dψ ψ ϑ ϑ ϑ ϑ ϑ ϑ
= =

= − + + −∑ ∑∫ ∫ , (5.7) 

 
( )

1

1

( , ) 1 ( , ) ( ) ( , ) ( )

( , ) ( , ) .

m t

i i i i iksk

m t

ik ksk

V s t H s t t s Q s s d

Q s V t d

ψ ψ ϑ ϑ ϑ

ϑ ϑ ϑ

=

=

= − ⋅ − + ⋅ −

+

∑∫

∑∫
 (5.8) 

 
5.2.2 Variable Permanence And Transition Rewards 
 
Here we assume that: 
a) rewards are variable in time, 
b) rewards are given for permanence in the state and at a given transition, 
Under these hypotheses, we get respectively for homogeneous and non-
homogeneous environments, in the immediate cases the following results: 

 

1 1 1 1

1 1 1 1

( ) (1 ( )) ( ) ( ) ( )

( ) ( ) ( ) ( ),

t m t

i i i ik i
k

m t m t

ik ik ik k
k k

V t H t b

b b V t

ϑ

τ ϑ τ

ϑ ϑ

ψ τ ϑ ψ τ

ϑ γ ϑ ϑ ϑ

= = = =

= = = =

= − +

+ + −

∑ ∑∑ ∑

∑∑ ∑∑
 (5.9) 
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1 1 1 1

1 1 1 1

( , ) (1 ( , )) ( ) ( , ) ( )

( , ) ( ) ( , ) ( , ).

t m t

i i i ik i
s k s

m t m t

ik ik ik k
k s k s

V s t H s t b s

b s b s V t

ϑ

τ ϑ τ

ϑ ϑ

ψ τ ϑ ψ τ

ϑ γ ϑ ϑ ϑ

= + = = + =

= = + = = +

= − +

+ +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 (5.10) 

In the due case we obtain: 

 

1 1 1 1

1 1 1 1

( ) (1 ( )) ( 1) ( ) ( 1)

( ) ( ) ( ) ( ),

t m t

i i i ik i
k

m t m t

ik ik ik k
k k

V t H t b

b b V t

ϑ

τ ϑ τ

ϑ ϑ

ψ τ ϑ ψ τ

ϑ γ ϑ ϑ ϑ

= = = =

= = = =

= − − + −

+ + −

∑ ∑∑ ∑

∑∑ ∑∑
 (5.11) 

 

1 1 1

1 1 1 1 1

( , ) (1 ( , )) ( 1) ( , ) ( )

( , ) ( 1) ( , ) ( , ).

t m t

i i i ik ik
s k s

m t m t

ik i ik k
k s k s

V s t H s t b s

b s b s V t

τ ϑ

ϑ

ϑ τ ϑ

ψ τ ϑ γ ϑ

ϑ ψ τ ϑ ϑ

= + = = +

= = + = = = +

= − − +

+ − +

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑
 (5.12) 

The difference between immediate and due is given only by the time of payment 
of the rewards. 
The continuous cases are the following: 

 
( )

( )

0 0 01

01

( ) 1 ( ) ( ) ( ) ( )

( ) ( ) ( ) ,

mt t

i i i ik i
k

m t

ik k ik
k

V t H t d Q d d

Q V t d

ϑ
ψ τ τ ϑ ψ τ τ ϑ

ϑ ϑ γ ϑ ϑ

=

=

= − +

+ − +

∑∫ ∫ ∫

∑∫
 (5.13) 

 
( )

( )

1

1

( , ) 1 ( , ) ( ) ( , ) ( )

( , ) ( , ) ( ) .

mt t

i i i ik is s sk

m t

ik k iksk

V s t H s t d Q s d d

Q s V t d

ϑ
ψ τ τ ϑ ψ τ τ ϑ

ϑ ϑ γ ϑ ϑ

=

=

= − +

+ +

∑∫ ∫ ∫

∑∫
 (5.14) 

The presence of the lump sums given or taken at the moment of transition times 
is taken into consideration.  
 
5.2.3 Non-Homogeneous Permanence And Transition Rewards 
 
In the last immediate case model, the rewards are non-homogeneous and so we 
have to consider only the non-homogeneous case. 
Assumptions are thus: 
a) rewards depend on the times s and t, 
b) permanence and transition rewards are non-homogeneous. 
Here, only the non-homogeneous case has sense and the evolution equations take 
the form: 
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1 1 1 1

1 1 1 1

( , ) (1 ( , )) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ).

t m t

i i i ik i
s k s s

m t m t

ik ik ik k
k s k s

V s t H s t s b s s

b s s b s V t

ϑ

τ ϑ τ

ϑ ϑ

ψ τ ϑ ψ τ

ϑ γ ϑ ϑ ϑ

= + = = + = +

= = + = = +

= − +

+ +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 (5.15) 

 

1 1 1 1

1 1 1 1

( , ) (1 ( , )) ( , 1) ( , ) ( , 1)

( , ) ( , ) ( , ) ( , ).

t m t

i i i ik i
s k s

m t m t

ik ik ik k
k s k s

V s t H s t s b s s

b s s b s V t

ϑ

τ ϑ τ

ϑ ϑ

ψ τ ϑ ψ τ

ϑ γ ϑ ϑ ϑ

= + = = + =

= = + = = +

= − − + −

+ +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 (5.16) 
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1

1

( , ) 1 ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) .

mt t

i i i ik is s sk

m t

ik k iksk

V s t H s t s d Q s s d d

Q s V t s d

ϑ
ψ τ τ ϑ ψ τ τ ϑ

ϑ ϑ γ ϑ ϑ

=

=

= − +

+ +

∑∫ ∫ ∫

∑∫
 (5.17) 

The other non-discounted cases can be treated in a similar way and are left to the 
reader, who can refer also to Janssen-Manca (2006). 
 
5.3 Discounted SMRWP
 
For the discounted case developed in this section, we assume that all the rewards 
are discounted at time 0 in the homogeneous case and at time s in the non-
homogeneous case. Let us point out that these models, as we will see below, are 
very important for insurance applications. 
 
5.3.1. Fixed Permanence And Interest Rate Cases
 
In the first formulation of this case we suppose that: 
a) rewards are fixed in time, 
b) rewards are given only for permanence in the state, 
c) interest rate r is fixed. 
In this case ( )iV t  represents the Rewards Mean Present Value (RMPV) paid or 
received in a time t, given that at time 0 the system is in state i.  
Under these hypotheses, a similar reasoning as before leads to the following 
result for the evolution equation, firstly for the homogeneous immediate case:  

( )
1

1 1 1 1

1 1 1
(1) 1 (1) (1) ( ) (1 ) ,

m m

i i i ik i ik k i
k k

V H b b V
ϑ

ψ ν ψ ν ϑ ϑ ν ψ ν
= = =

= − + + − =∑ ∑∑  (5.18) 

 1 1 1 1
( ) (1 ( )) ( ) ( ) ( ) .

m t m t

i i i ik i ik kt r r
k k

V t H t a b a b V t ϑ
ϑ

ϑ ϑ
ψ ϑ ψ ϑ ϑ ν

= = = =

= − + + −∑∑ ∑∑ (5.19) 

For the non-homogeneous case, this last result becomes: 
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1 1

1 1

( , ) (1 ( , )) ( , )

( , ) ( , ) .

m t

i i i ik it s r sr
k s

m t
s

ik k
k s

V s t H s t a b s a

b s V t

ϑ
ϑ

ϑ

ϑ

ψ ϑ ψ

ϑ ϑ ν

− −
= = +

−

= = +

= − +

+

∑ ∑

∑ ∑  
(5.20) 

To explain these results, as for the continuous case, we divide the evolution 
equation in three parts. The meaning is the same given in the previous cases but 
we use annuity formulas. 
Let us just make the following comments: 
The term (1 ( , ))i i t s rH s t aψ −−  represents the present value of the rewards 
obtained without state changes. More precisely (1 ( , ))iH s t−  is the probability 
of remaining in the state i and i t s raψ −

 
is the present value of a constant annuity 

of t s− payments iψ . 
 

The term 
1 1

( , )
m t

ik i s r
k s

b s aϑ
ϑ

ϑ ψ −
= = +
∑ ∑  gives the present value of the rewards t obtained 

before the change of state. 

The term 
1 1

( , ) ( , )
m t

s
ik k

k s
b s V t ϑ

ϑ
ϑ ϑ ν −

= = +
∑ ∑  gives the present value of the rewards paid 

or earned after the transitions and as the change of state happens at timeϑ , it is 
necessary to discount the reward values at time s. 
In the due environment we obtain: 

 

1

1 1 1 1
( ) (1 ( )) ( ) ( ) ( ) ,

m t m t

i i i ik i ik kt r r
k k

V t H t a b a b V t ϑ
ϑ

ϑ ϑ
ψ ϑ ψ ϑ ϑ ν −

= = = =

= − + + −∑∑ ∑∑ (5.21) 
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s
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k s

V s t H s t a b s a
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ϑ
ϑ

ϑ

ϑ

ψ ϑ ψ

ϑ ϑ ν

− −
= = +

− −

= = +

= − +

+

∑ ∑

∑ ∑
 (5.22) 

At last the evolution equations in the continuous case are the following: 

( )
01

01

1 1( ) 1 ( ) ( )

( ) ( ) ,
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5.3.2 Variable Interest Rate, Permanence And Transition Cases 
 
Now we make the following assumptions: 
a) rewards are variable in time, 
b) rewards are given for permanence in the state and at a given transition, 
c) the interest rate is variable. 
Under these hypotheses, in the immediate case we get the following relations: 
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In the due case we get: 
1 1
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The evolution equations in the continuous case are the following: 
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5.3.3 Non-Homogeneous Interest Rate, Permanence And Transition Case 
 
For our last case, we consider non-homogeneous rewards and interest rate. And 
so basic assumptions are: 
a) rewards are non-homogeneous, 
b) rewards are given for premanence and transitions, 
c) interest rate is non-homogeneous. 
It can easily be verified that the evolution equations take the form: 
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6 GENERAL ALGORITHMS FOR DTSMRWP 
 
In the previous section, we presented useful discrete time semi-Markov reward 
processes as well as general global models for which the evolution equations can 
be written in the matrix form 
 * =U V C . (6.1) 
In the homogeneous case, U is an infinite order lower-triangular matrix whose 
elements are m m×  matrices and V and C are infinite order vectors whose 
elements are m-dimensional vectors. 
In the non-homogeneous case in (6.1) U is an infinite order upper-triangular 
matrix whose elements are m m×  matrices and V and C are infinite order 
matrices whose elements are m-dimensional vectors. 
Of course, matrices U and C depend on the particular models presented in the 
preceding section.  
For real life applications, it is generally sufficient to study the problem on a finite 
time horizon [0, ]T  and then the infinite system (6.1) becomes a finite system 
 *T T T=U V C  (6.2) 
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where T U  is a square lower triangular block matrix of order 1T +  in the 
homogeneous case and an upper triangular block matrix in the non-homogeneous 
case. ,T TC V  are respectively 1T + -dimensional vectors, in the homogeneous 
case, and matrices, in the non-homogeneous case, whose elements are m-
dimensional vectors.  
We will present briefly two general algorithms (homogenous and non- 
homogeneous) solving all possible reward cases. 
The main steps of these algorithms are the following: 
 
(i) Homogeneous case 
Input – selectors that choose among the SMRWP, the number of states and 
the number of periods, the permanence and transition rewards, the fixed or 
variable interest rate, the transition matrix P and the matrix T F  of waiting 
time d.f. 
Construct - T Q  
Construct - T B  
Construct - T H  
Construct - T D  
Construct – the permanence rewards 
Construct – the transition rewards 
Construct – the vector discount factors 
Construct – T C , known terms 
Solve - the system and find T V  
 
(ii) Non-homogeneous case 
Input – selectors, the number of states and the number of periods, the 
permanence and transition rewards, the fixed, variable or non-homogeneous 
interest rate, the transition matrix P and the matrix T F  waiting time d.f. 
 
Construct - T Q  
Construct - T B  
Construct - T H  
Construct - T D  
Construct – the permanence rewards 
Construct – the transition rewards 
Construct – the matrix discount factors 
Construct – T C , known terms 
Solve  -  the system and find T V  
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These algorithms are able to solve any DTSMRWP. They constitute a very 
important tool for the application of semi-Markov reward processes in many 
applied sciences and, in this book, mainly in Finance, Insurance and Reliability.  
 
7 NUMERICAL TREATMENT OF SMRWP 
 
7.1 Undiscounted Case 
 
Let us consider relations (5.7) and (5.13): 
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For non-homogeneous models, the simplest and the most difficult cases are given 
by formulas (5.8) and (5.17), i.e: 
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Relations (7.2) and (7.4) can be written also as follows:   
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and so both the homogeneous and non-homogeneous integral equations can be 
written as follows: 
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where for relations (7.1) and (7.3), we have: 
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and for relations (7.2) (7.4): 
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As it can be seen, these last four equations have known terms that differ 
substantially but the coefficients of the two homogeneous integral equations are 
the same as in the non-homogeneous case.  
Furthermore the integral equation (7.7) has the same coefficient as the equation 
(2.1) and the equation (7.8) the same as the equation (2.2).  
As for the discretization of the homogeneous and non-homogeneous semi-
Markov processes presented in section 2, we can consider the generic quadrature 
formula (2.3).  
Let us recall that h is the step measure, , , , , ,u k N u k N≤ ∈ ,w  the weights 
related to the quadrature formula. 
We also know that N is such that Nh Y=  and [ ]0,Y  is the integration interval.  
Now, relations (7.7) and (7.8) can be discretized in the following way: 
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but here, due to integral terms, the known term c  should also be discretized. 
Relations (7.13) and (7.14) in matrix form become: 
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These last two relations take the form: 

 ( )0
1

(0) ( ) ( ) ( ) ( ),
k

k kw kh kh w h kh hτ
τ

τ τ
=

− ∗ = + ∗ −∑I Q V f Q V  (7.19) 

 
( )

1

( , ) ( , )

( , ) ( , ) ( , ).

uu

k

uk
u

w uh uh uh kh

uh kh w uh h h kh

τ

τ
τ

τ τ
= +

− ∗

= + ∗∑

I Q V

c Q V
 (7.20) 

Coefficient matrices of (7.19) and (7.20) are the same as those defined in systems 
(2.6) and (2.7) and so Theorem 2.1 holds also in these cases. 
The only difference is that the elements of the known terms are more difficult to 
construct. 
 
7.2 Discounted Case
 
In this financial environment, we will consider the most complicated 
homogeneous and non-homogeneous discounted cases. 
More precisely the CTHSMRWP related to relation (5.29) and the 
CTNHSMRWP formula (5.33) will be tackled.  
As before we report the two relations: 
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Relations (7.21) and (7.22) can be written as follows: 
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These equations take also the following form: 
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equations having the same structure. 
This is also true for all the other cases with a fixed or variable intensity of interest 
rate.  
We can thus proceed to the discretization procedure as before, to get the 
following relations: 
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The functions ( )hr θ and ( , )hr u θ  are the variable rates of interest obtained in this 
way: 
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In matrix form, the equations can be written in the following way: 
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or equivalently: 
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We can also write: 
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So, we have shown that in the most difficult discounted cases, we get equations 
having the same coefficient matrices as the equations (7.19) and (7.20); 
consequently, here too, Theorem 2.1 holds. 
 
8. RELATION BETWEEN DTSMRWP AND SMRWP 
NUMERICAL SOLUTIONS 
 
This section is related to the relation between the numerical solution of 
continuous and discrete time semi-Markov reward processes to show that, as in 
the SMP case, this approximation formula leads to the related discrete time 
process. 
For simplicity, we just prove this result in the simplest numerical approach, i.e. 
the rectangle formula. 
With this method, it is possible to evaluate the integral using the values of the 
function at the minimum of each of the discretization intervals or at the 
maximum 
Clearly, in the continuous case to distinguish between the due and the immediate 
cases is meaningless and here we assume that reward payment times correspond 
to the “times” of the evaluations so that we could obtain respectively, by means 
of discretization, the due and the immediate cases. Here we only consider the 
immediate case. 
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8.1 Undiscounted Case 
 
Taking into account relations (7.7) and (7.8), the general numerical solutions of a 
non-discounted CTHSMRWP and CTNHSMRWP can be written respectively in 
the following way: 
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In the special case of relations (5.7) and (5.8), the equations (8.1) and (8.2) 
become: 
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where iψ  represents the constant permanent reward paid at the end of each 
period. 
Substituting the differential by means of the increment, we get: 
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Using relations (1.11) and (1.12) and setting 1h = , these results can be written in 
the form:  
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As we know that (0) 0ijb = and ( , ) 0ijb u u = , i,j=1,…,m, relations(8.7) and (8.8) 
correspond in fact to the evolution equations (5.5) and (5.6). 
As for the second case, we will now give the numerical solution of the evolution 
equations of (5.13) and (5.17), respectively for homogeneous and non-
homogeneous cases. 
Let us recall these two equations: 
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Proceeding as for the first case, we obtain: 
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so that relations (8.11) and (8.12) correspond in fact to relations (5.10) and 
(5.14). 
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8.2 Discounted Case 
 
The change from continuous and discrete time in discounted cases implies that 
the financial discounting factors should change; in the case of constant intensity 
interest rate δ , it results that 
 ( ) 11 h

hr e δ− −+ = , (8.13) 
and in the case of variable intensities respectively for homogeneous and non- 
homogeneous cases: 
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(for more details on this topic see Volpe di Prignano (1985), Kellison(1991). 
Now we will present two cases in the discounted environment: the discretization 
of relations (5.23), (5.24) and then of relations (5.29) and (5.33). 
For the first case, the discretization method gives as relations: 
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Proceeding in the same way we use to get relations (8.7) and (8.8), the following 
results are obtained: 
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corresponding to relations (5.19) and (5.23).  
For the second case, let us begin with the discretization of the equation (5.29) 
leading to: 
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Once more, proceeding in the same way we use to find relations (8.7) and (8.8), 
we get: 
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this result corresponding to relation (5.25).  
Finally, we have to dicretize the equation (5.33): 
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And as above, we get the result corresponding to relation (5.31) 
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Chapter 5 
 
SEMI-MARKOV EXTENSIONS OF THE BLACK- 
SCHOLES MODEL 
 
1 INTRODUCTION TO OPTION THEORY 
 
During the last thirty years, financial innovation has generalised the systematic 
use of new financial instruments such as options and swaps, mainly motivated for 
hedging but also, sometimes, used as speculative tools. 
So, let us begin by recalling the basic definition of option theory. 
 
Definition 1.1 A call option (resp. put option) is a contract giving the right to 
buy (resp. to sell) a financial asset, called an underlying asset, for a fixed price, 
called exercise price, at the end of the contract time, called maturity time, also 
laid down in the contract. 
 
If one can exercise the option at any time before maturity, this type of option is 
called of an American type; if one can exercise it only at maturity, the option is 
called of a European type. 
Let us use the following notation: 
K: exercise price, 
T: maturity time, 
S: value of the underlying asset at maturity. 
Then the “gain” of the holder of a European option at maturity time T is 
represented by the following graph. 

0 K S

S-K

 
Figure 1.1: call option: holder’s gain at maturity   
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For the holder of a put, this graph becomes: 
 

K

K

S

   K-S

 
Figure 1.2: put option: holder’s gain at maturity   

 
Of course, to get the “net gain”, we must estimate the cost of the option, often 
called option premium, and furthermore transaction costs and taxes. 
Let us represent respectively by C and P the premiums of call and put options. 
So, we get, without taking into account transaction costs and taxes, the following 
two graphical representations 

-C -P

K K+C K-P K

CALL PUT

 
Figure 1.3: call and put options: net gains at maturity for the holder 

 
The main problem is called the pricing of optional products, that is to give within 
the framework of an economic-financial theory framework, the values of 
premiums C and P as a function of the maturity T and the value of the asset at 
time 0. 
More generally, as the holder of an option can sell his option on the option 
market at any time t, 0<t<T, it is also necessary to give the “fair” value of the 
option at this time t knowing that the underlying asset has, at this time, the value 
S=S(t). 
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Commonly, this fair market value is represented by  
 ),( τSC  (1.1) 
where 
 tT −=τ  (1.2) 
represents the maturity computed at time t. 
Sometimes, it is also useful to represent the call value as a function of the time 
C(S,t). 
We see here that it is absolutely necessary to make assumptions about the 
stochastic process 
 ( ).0),( TttSS ≤≤=  (1.3) 
Concerning the economic-financial theory framework, we adopt the assumption 
of efficient market, meaning that all the information available at time t is 
reflected in the values of the assets and so, transactions having an abnormally 
high profitability are not possible. 
More precisely, an efficient market satisfies the following assumptions: 
1. absence of transaction costs, 
2. possibility of short sales, 
3. availability of all information to all the economic agents,  
4. perfect divisibility of assets, 
6. continuous time financial market.  
 Furthermore, the market is complete; meaning that there exist zero-coupon 
bonds without risk for all possible maturities. 
Let us remark that the word “information” used in point 3 can have different 
interpretations: weak, semi-strong or strong depending on if it is based on past 
prices, or on all public information or finally on all possible information that the 
agent can find. 
According to Fama (1965), the efficient assumption justifies the “random walk” 
model in discrete time, saying that if ( )iR sΔ represents the increment of an asset i 
between s and s+1, we have: 
  ( ) ( )i i iR s sμ εΔ = + , (1.4) 

iμ being a constant and ( ( ))i sε a sequence of uncorrelated r.v. of mean 0, 
sometimes called errors. 
If we add the assumptions of equality of variances and of normality of the 
sequence ( ( ))i sε , we get in fact a special case of the classical random walk 
introduced in Chapter 3. 
If the efficiency assumption seems to be natural, some empirical studies show 
that it is not always the case in particular, since some agents can have access to 
preference information in principle forbidden by the legal authority. 
Nevertheless, should such agents use the pertinent information it will be quickly 
noticeable by those markets and balance between agents will be restored. 
This possibility, also called the case of asymmetric information, was studied by 
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 Spence, Akerlof and Stiglitz, who was awarded the Nobel Prize in Economics in 
2001. 
From a personal point of view, the authors think that if the efficiency assumption 
seems quite normal for the long term, i.e., with a time unit large enough, 
however, it does not always seem to be true locally, i.e., with a short time unit. 
Indeed deregulation of markets where investors are willing to accept very small 
benefits in a short time but with many transactions plainly explains the intense 
activity of, for example, the currency markets which get very small benefits.  
Due to the possibility of arbitrage, this is virtually making money without any 
investment otherwise known as “free lunch”. 
That is why models for asymmetric information should always be short term 
models rejecting the AOA assumption. 
To be complete, let us remark that it is now possible to construct models without 
the AOA assumption but with assumptions on the time asset evolution and a 
selection of different possible scenarios, so that the investor can predict what will 
happen if such scenarios occur (cf Janssen, Manca et Di Biase (1997) and 
Jousseaume (1995)).  
To conclude this section, let us emphasize the fact that traditional option pricing 
needs the efficiency of market dynamics and so of the AOA and also the choice 
of a stochastic model for the underlying asset time evolution. 
Therefore we will begin this chapter with a presentation of the two most used 
classical models: the Cox-Ross-Rubinstein model in discrete time and the 
Black-Scholes model in continuous time. Then we will give the semi-Markov 
extension of these two models presented by Janssen and Manca (1999) and 
finally a non semi-Markov model with possibility of arbitrage (Janssen, Manca et 
Di Biase (1997)). 
 
2 THE COX-ROSS-RUBINSTEIN (CRR) OR BINOMIAL 
MODEL 
 
The model we will present here has the advantage of being quite simple in a 
financial world not always open to the use of sophisticated mathematical tools 
such as those used by Black and Scholes in 1973 to get their famous formula. 
And so the CRR model, though coming later, was very good for the use of the BS 
formula since, in the limit, the CRR model gives this formula again. 
Moreover, the CRR model has still its own utility for financial institutions using 
discrete time models even with a short time period. 
 
 
 
 
 



 
 
 
 
 
 
Black & Scholes extensions                                                                                175 

2.1 One-Period Model 
 
To begin with, let us consider a model with only one time period, from time 0 to 
time 1; the time unit can be chosen as the user wishes: a quarter, a month, a 
week, a day, an hour,…. 
The basic assumption concerning the stochastic evolution of the underlying asset 
is that, starting from value 0(0)S S=  at time 0, it can only get two values at the 
end of the time period: 0 ( 1)uS u >  if there is an up movement or 0 (0 1)dS d< <  
in the case of a down movement, parameter u and d being supposed to be known 
for the moment. 
The probability measure is thus defined by the probability q of an up movement 
and to avoid trivialities, we will assume that: 
 0 1.q< <  (2.1) 
The next figure shows the two possible trajectories with of course  
 1 .p q= −  (2.2) 

0 1

S(0)

S(1)=uS(0)

S(1)=dS(0)

u

d

q

p

 
Figure 2.1: one-period binomial model 

 
If one prefers to work with the percentages x and y respectively of gain and loss, 
we can express u and d as follows: 

 
1 , 1 .

100 100
x yu d⎛ ⎞ ⎛ ⎞= + = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (2.3) 

We also suppose that there is no dividend distribution during the period. 
Let us now consider an investor wishing to buy a European call on time 0 with 
maturity 1 and with K as exercise price. 
The problem is thus to fix the premium of this call, that which the investor has to 
pay at time 0 to buy this call, knowing the value S0 of the underlying asset at time 
0. 
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2.1.1 The Arbitrage Model 
 
If the investor wants to buy a call, it is clear that he anticipates an up movement 
of the call so that exercising the call at the end of the period will be advantageous 
for him and of course for the seller of the call the reverse will happen. 
Nevertheless, the investor would take as little risk as possible knowing that he 
has always the possibility to invest on the non-risky market giving a fixed 
interest rate i per period. 
To build a theory taking into account the apparently contradictory points of view, 
modern financial theory is based on the principle of absence of arbitrage 
opportunity (in short the AOA principle) meaning that there is no possibility to 
gain money without any investment, that is, there is no possibility of getting a 
free lunch. 
This principle implies that the parameters d, u and i of the model must satisfy the 
following inequalities: 
 1d i u< + < . (2.4) 
Indeed, let us suppose for example that the first inequality is not true. In this case 
the investment in the asset is always better than the investment in the non-risky 
market. Then if we borrow the sum 0S  from the bank and buy the asset, at the 
end of the period we gain for sure the amount ( ) 0(1 ) ,d i S− +  and this is a free 
lunch.  
Similarly, if the right-hand inequality is false, we can sell the asset at time 0 to 
get it to the seller at time 1 and so, the minimum value of the free lunch is in this 
case 0(1 )i u S+ − , so that in both cases, the AOA principle is not satisfied. 
As the seller of a call option, for example, has the obligation to sell the shares if 
the holder of the call exercises his right, he must be able to do it whatever the 
value of the considered share is; that is why we have to introduce the important 
concept of hedging. 
To do so, let us consider a portfolio in which at time 0 we have Δ shares and an 
amount B of money invested at the non-risky rate i per period. 
B may be negative in case of a loan given by the bank. 
Under the AOA assumption, the investment in the call must follow the same 
random evolution as the considered portfolio so that we have the following 
relations for t=1: 

 

0 0

0 0

(1) (1 ) ,
(1) (1 ) ,

u

d

C uS i B
C dS i B

= + +
= + +

 (2.5) 

where 

 0

0

(1) max{0, },
(1) max{0, }.

u

d

C uS K
C dS K

= −
= −

 (2.6) 

The system (2.5) is a linear system with two unknown values , .BΔ  
The unique solution is given by: 
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0

(1) (1) ,
( )

(1) (1) .
( )(1 )

u d

d u

C C
u d S

uC dCB
u d i

−
Δ =

−
−

=
− +

 (2.7) 

Now, as said above, from the AOA assumption, the value of the call at 0t = , 
denoted for the moment by ( )0 ,0C S , is equal to the initial value of the portfolio 
so that: 

 
0 0 0

0 0
0

( ,1) ,
(1) (1) (1) (1)( ,1) .

( ) ( )(1 )
u d d u

C S S B
C C uC dCC S S

u d S u d i

= Δ +

− −
= +

− − +
 (2.8) 

We can also write this value in the following form: 

 

[ ]0
1( ,0) (1) (1 ) (1) ,

1
1 .

u dC S qC q C
i

i dq
u d

= + −
+

+ −
=

−

 (2.9) 

This last expression shows that the value of the call at the beginning of the period 
can be seen as the present value of the expected value of the “gain” at the end of 
the period. But this expectation is computed under a new probability measure 
defined by q , called risk neutral measure in opposition to the initial measure 
defined by q, and called the historical or physical measure. 
From assumption (2.4), this risk neutral measure is unique and moreover 
independent of q, that is on the historical measure. 
This shows that whatever the investor anticipates about the price of the 
considered underlying asset, using this model, he will always get the same result 
as another investor. 
However, it must be clear that this risk neutral measure only gives an easy way to 
compute the “fair” value of the call, but if we want to compute probabilities of 
events, such as for example the probability of exercising the call at the end of the 
period, then it is the historical measure that must be used. 
 
2.1.2 Numerical Example 
 
Let us consider the data 

 0 80, 80, 1.5, 0.5, 3%.S K u d i= = = = =  (2.10) 
It follows from the following model: 

 

{ }
{ }

(1) max 0.80 1.5 80 40,

(1) max 0.80 0.5 80 0.
u

d

C

C

= × − =

= × − =
 (2.11) 

The value of q is obtained, i.e.,  
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 1.03 0.5 0.53
1.5 0.5

q −
= =

−
 (2.12) 

and so we get the option value 

 
[ ]1(80,0) 40 (1 ) 0 20.5825.

1.03finC q q= × + − × =  (2.13) 

2.2 Multi-Period Model 
 
2.2.1 Case Of Two Periods  
 
The two following figures show how the model with two periods works. 
Here we have to evaluate not only the value of the call at the origin but also at the 
intermediary time t=1. 
 

0 1 2

S

uS

uuS

dS

udS

ddS

 
Figure 2.2: two-period model: scenarios for the underlying asset 

 
Using the notation ( , ), 0,1,2C S t t = in which the second variable represents the 
time, here 0, 1 or 2, the first one is the value of the underlying asset  at this 
considered time. 
Here too, as in the case of only one period, the call values will be assessed with 
the risk neutral measure as the present values  at time t of the “gains” at maturity 
t=2 i.e.: 

 ( )( ,2) .qE C S  (2.14) 



 
 
 
 
 
 
Black & Scholes extensions                                                                                179 

0 1 2

C

Cu

Cuu

Cd

Cud

Cdd

 
Figure.2.3: two-period model: values of the call 

 
For example we get for t = 0: 

 

{ }
{ } { }

2 2
0

0 2 2 2
0 0

max 0, 2 (1 )1( ,0) .
(1 ) max 0, (1- ) max 0,

q u S K q q
C S

i udS K q d S K

⎡ ⎤− + −
⎢ ⎥=

+ ⎢ ⎥⋅ − + −⎣ ⎦
 (2.15) 

 
Remark 2.1 Using a backward reasoning from t=2 to t=1 and from t=1 to t=0, it 
is also possible to get this last result since in fact: 

 
[ ]

2
0 0 0

2
0 0 0

0 0 0

1( ,1) ( ,2) (1 ) ( ,2) ,
1

1( ,1) ( ,2) (1 ) ( ,2) ,
1
1( ,0) ( ,1) (1 ) ( ,1) .

1

C uS qC u S q C udS
i

C dS qC udS q C d S
i

C S qC uS q C dS
i

⎡ ⎤= + −⎣ ⎦+

⎡ ⎤= + −⎣ ⎦+

= + −
+

 (2.16) 

Substituting the first two values in the last equality given just above, we get back 
to relation (2.15). 
 
2.2.2 Case Of n Periods 
 
If 0( , )j n ju d

C S n−  represents the call value at t=n if the underlying asset has had j up 
movements and n j−  down movements and with an initial value of the 
underlying asset of (0)S , that is: 

 { }0 0( , ) max 0, , 0,1,..., ,j n j
j n j

u d
C S n u d S K j n−

−= − =  (2.17) 
a straightforward extension of the case of two periods gives the following result: 

 
0

0

1( ,0) (1 ) ( )
(1 ) j n j

n
j n j

n u d
j

n
C S q q C n

ji −
−

=

⎛ ⎞
= −⎜ ⎟+ ⎝ ⎠

∑  (2.18) 
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and similar results for intermediary time values. 
From the computational point of view, Cox and Rubinstein introduced the 
minimum number of up movements a so that the call will be “in the money”, that 
will mean that the holder has the advantage to exercise his option; clearly, this 
integer is given by: 

 { }0min : .j n ja j N u d S K−= ∈ >  (2.19) 
Of course, if a is strictly larger than n, the call will always finish “out of the 
money” so that the call value at t=n is null. 
From relation (2.19), we get: 

 

1
0

0 1

log 1,
log

n
j n j KS du d S K a

ud

− −
−

−

⎢ ⎥
= ⇔ = +⎢ ⎥

⎣ ⎦
 (2.20) 

x⎢ ⎥⎣ ⎦  representing the larger integer smaller than or equal to the real x. 
From Chapter 1, section 5.1, we know that if X is a r.v. having a binomial 
distribution with parameters (n,q), we have: 

 
( )1 (1 ) ( ( , ; )).

n
j n j

j a

n
P X a q q B n q a

j
−

=

⎛ ⎞
> − = − =⎜ ⎟

⎝ ⎠
∑  (2.21) 

As we have (see Cox, Rubinstein (1985), p.178): 

 
1 1,iq

u
+

< <  (2.22) 

it follows that the quantity 'q  defined below is such that 0 ' 1q< < and so the call 
value can be written in the form: 

 

0 0( ,0) ( , '; ) ( , ; ),
(1 )

1 , ' .
1

fin n

KC S S B n q a B n q a
i

i d uq q q
u d i

= −
+

+ −
= =

− +

 (2.23) 

In conclusion, the binomial distribution is sufficient to compute the call values. 
 
2.2.3 Numerical Example 
 
Coming back to the preceding example for which 

 0 80, 80, 1.5, 0.5, 3%,S K u d i= = = = =  (2.24) 
and 0.53q =  but now for n=2, we get: 

 
1.5' 0.6 0.7718
1.03

q = × =  (2.25) 

and consequently  
 (80,0) 26.4775.C =  (2.26) 
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3 THE BLACK-SCHOLES FORMULA AS LIMIT OF 
THE BINOMIAL MODEL  
 
3.1 The Log-Normality Of The Underlying Asset 
 
Since nowadays financial markets operate in continuous time, we will study the 
asymptotic behaviour of the CRR formula (2.23) to obtain the value of a call at 
time 0 and of maturity T. 
To begin with, we will work with a discrete time scale on [0,T] with a unit time 
period h defined by n=T/h or more precisely /n T h= ⎢ ⎥⎣ ⎦ . 
Moreover, if i represents the annual interest rate, the rate for a period of length h 
called î  is defined by the relation: 

 
ˆ(1 ) (1 )n Ti i+ = + , (3.1) 

so that 

 
ˆ (1 ) 1.

T
ni i= + −  (3.2) 

If nJ  represents the r.v. giving the number of ascending movements of the 
underlying asset, we know that: 

 ( , )nJ B n q≺  (3.3) 
and so, starting from 0 ,S the value of the underlying asset at the end of period n 
is given by 

 
, ,

0( ) .n nJ n JS n u d S−=  (3.4) 
It follows that  

 0

( )log log log .n
S n uJ n d
S d

= +  (3.5) 

The results of the binomial distribution (see Chapter 1, section 5.1) imply that 

 

0

2

0

2

2
2

( ) ˆlog ,

( ) ˆvar log ,

ˆ ˆ log ,

ˆ (1 ) log .

S nE n
S

S n n
S

q d

uq q
d

μ

σ

μ σ

σ

⎛ ⎞
=⎜ ⎟

⎝ ⎠
⎛ ⎞

=⎜ ⎟
⎝ ⎠

= +

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 (3.6) 

To obtain a limit behaviour, for every fixed n, we must introduce a dependence 
of u, d and q with respect to /n T h= ⎢ ⎥⎣ ⎦  so that  
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2 2

ˆlim ( ) ,

ˆlim ( ) ,
n

n

n n T

n n T

μ α

σ σ
→∞

→∞

=

=
 (3.7) 

,α σ  being constant values as parameters of the limit model. As an example, Cox 
and Rubinstein (1985) select the values  

 

/1, ( ),

1 1 / .
2 2

T T nnu e d e
u

q T n

σ σ

α
σ

−= = =

= +
 (3.8) 

This choice leads to the values: 

 

2 2 2

ˆ ( ) ,

ˆ ( ) .

n n T
Tn n T
n

μ α

σ σ α

=

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (3.9) 

Using a version of the central limit theorem for independent but non-identically 
distributed r.v., the authors show that 0( ) /S n S  converges in law to a log-normal 
distribution for n → ∞ . More precisely, we have: 

 

0

( ) ˆlog ( )
( ),

ˆ

S n n n
SP x x

n

μ

σ

⎛ ⎞−⎜ ⎟
⎜ ⎟≤ → Φ
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (3.10) 

Φ  being as defined in Chapter 1, section 5.3, the distribution function of the 
reduced normal distribution provided that the following condition is satisfied: 

 

3 3

3

ˆ ˆlog (1 ) log
0.

ˆ n

q u q u
n

μ μ
σ →∞

− + − −
⎯⎯⎯→  (3.11) 

This condition is equivalent to 

 

2 2(1 ) 0
(1 )

q q
nq q
− +

→
−

 (3.12) 

which is true from assumption (3.8). 
This result and the definition given in Chapter 1, section 5.4, give the next 
proposition: 
 
Proposition 3.1(Cox and Rubinstein (1985)) 
Under the assumptions (3.8), the limit law of the underlying asset is a lognormal 
law with parameters 2( , )T Tα σ or 

 
0

( )log
( ) ( ).

S T T
SP x x

T

α

σ

−
≤ = Φ

 (3.13) 
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In particular, it follows that: 
 

 

2

2 2

2

0

2

0

( ) ,

( )var ( 1).

T T

T T T

S TE e
S

S T e e
S

σα

α σ σ

+

+

⎛ ⎞
=⎜ ⎟

⎝ ⎠
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (3.14) 

 
3.2 The Black-Scholes Formula 
 
Starting from the result (2.21) and using Proposition 3.1 under the risk neutral 
measure, Cox & Rubinstein (1985) proved that the asymptotic value of the call is 
given by the famous Black and Scholes (1973) formula: 

 

( )
( , ) ( ) (1 ) ( ),

ln / (1 ) 1 .
2

T

T

C S T S x K i x T

S K i
x T

T

σ

σ
σ

−

−

= Φ − + Φ −

+
= +

 (3.15) 

Here, we note the call using the maturity as second variable and S representing 
the value of the underlying asset at time 0. 
The interpretation of the Black and Scholes formula can be given with the 
concept of a hedging portfolio. 
Indeed, we already know that in the CRR model, the value of the call takes the 
form: 
 C S B= Δ + , (3.16) 
Δ  representing the proportion of assets in the portfolio and B the quantity 
invested on the non-risky rate at t=0. 
From the result (3.16), at the limit, we obtain: 

 

( ),

(1 ) ( ).T

x

B K i x Tσ−

Δ = Φ

= − + Φ −
  (3.17) 

So, under the assumption of an efficient market, the hedging portfolio is also 
known in continuous time. 
 
Remark 3.1 This hedging portfolio must of course, at least theoretically, be 
rebalanced at every time s on [0,T]. Rewriting the Black and Scholes formula for 
computing the call at time s, the underlying asset having the value S, we get: 

 ( )
( )

( )

( ), (1 ) ( ),

ln / (1 ) 1 .
2

T s

T s

x B K i x T s

S K i
x T s

T s

σ

σ
σ

− −

− −

Δ = Φ = − + Φ − −

+
= + −

−

 (3.18) 
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Of course a continuous rebalancing and even a portfolio with frequent time 
changes are not possible due to the transaction costs. 
 
4 THE BLACK-SCHOLES CONTINUOUS TIME MODEL 
 
4.1 The Model 
 
In fact, Black and Scholes used a continuous time model for the underlying asset 
introduced by Samuelson (1965). 
On a complete filtered probability space ( )( )Ptt ,0,,, ≥ℑℑΩ  (see Definition 7.2 
of Chapter 1) the stochastic process  

 ( )( ), 0S S t t= ≥  (4.1) 
will now represent the time evolution of the underlying asset. 
The basic assumption is that the stochastic dynamic of the S-process is given by 

 0

( ) ( ) ( ) ( ),
(0) ,

dS t S t dt S t dB t
S S

μ σ= +
=

  (4.2) 

where the process [ ]( ( ), 0, )B B t t T= ∈ is a standard Brownian process (see 
Chapter 1, section 9 adapted to the considered filtration. 
 
4.2 The Itô Or Stochastic Calculus 
 
In (4.2), the equation is in fact a stochastic differential equation or an Itô 
differential equation as the term dB(t) must be considered formally since we 
know that the sample paths of a Brownian motion are a.s. non-differentiable (see 
Chapter 1, Proposition 9.1).  
That is why Itô (1944) created a new type of calculus, called stochastic calculus 
in which the integral with respect to b is defined as follows for every stochastic 
process [ ]( )( ), 0,f f t t T= ∈  adapted and integrable: 

 [ ]
1

1
00

( , ) ( , ) lim ( , ) ( , ) ( , ) ,
t n

k k kk k
f t dB t f t B t B tω ω ω ω ω

−

+→∞
=

= −∑∫  (4.3) 

where ( ) [ ]0 1 0, ,..., , ( 0, , 0, )n nt t t t t t t T= = ∈  is a subdivision of [ ]0,t  whose norm 
tends to 0 for n tending to +∞ , the limit being the so-called uniform convergence 
in probability (see Protter (1990)). 
Conversely, using the differential notation, if the stochastic process 

[ ]( )( ), 0,t t Tξ ξ= ∈  is declared to satisfy the following relation, called the Itô 
differential of ξ : 
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 dξ (t) = a(t)dt + b( t)dB(t) ; (4.4) 
then: 

 
0 0

( ) (0) ( ) ( ) ( ).
t t

t a s ds b s dB sξ ξ− = +∫ ∫  (4.5) 

For our applications, the main result is the so-called Itô´s lemma or the Itô 
formula, which is equivalent to the rule of derivatives for composed functions in 
the classical differential calculus. 
Let f be a function of two non-negative real variables x ,t such that 

 
0 0, , , .x xx tf C f f f C+ +× ×

∈ ∈  (4.6) 
Then the composed stochastic process 

 f (ξ( t), t), t ≥ 0( ) (4.7) 
is also Itô differentiable and its stochastic differential is given by: 

( )
2

2
2 2

( ( ), )

1( ( ), ) ( ) ( ( ), ) ( ( ), ) ( )
2

( ( ), ) ( ) ( ).

d f t t

f ft t a t t t f t t b t dt
x t x
f t t b t dB t
x

ξ

∂ ∂ ∂ξ ξ ξ
∂ ∂ ∂
∂ ξ
∂

=

⎡ ⎤
+ +⎢ ⎥

⎣ ⎦

+

 (4.8) 

 
Remark 4.1 Compared with the classical differential calculus, we know that in 
this case, we should have: 

 

( )( ( ), ) ( ( ), ) ( ) ( ( ), )

( ( ), ) ( ) ( ).

f fd f t t t t a t t t dt
x t

f t t b t dB t
x

∂ ∂ξ ξ ξ
∂ ∂

∂ ξ
∂

⎡ ⎤
= +⎢ ⎥

⎣ ⎦

+

   (4.9) 

So, the difference between relations (4.8) and (4.9) is the supplementary term  

 
1
2

∂ 2

∂ 2 2x
f (ξ (t), t)b2 (t)  (4.10) 

appearing in (4.8) and which is null iff in two cases: 
 
1) f is a linear function of x, 
2) b is identically equal to 0. 
 
Examples  
1)  For ξ  given by: 

 

dξ (t) = dB( t),
ξ (0) = 0.

 (4.11) 

Using notation (4.4), we get: 
 a(t)=0, b(t)=1. (4.12) 
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With the aid of the Itô formula, the value of 2 ( )d tξ is given by 

 
d 2ξ (t ) = 2ξ (t ).0 + 0 +

1
2

.2.1⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ dt + 2ξ( t).1.dB( t),  (4.13) 

and so 

 
2 ( ) 2 ( ). ( ).dB t dt B t dB t= +  (4.14) 

As we can see, the first term is the supplementary term with respect to the 
classical formula and is called the drift. 
2) Proceeding as for the preceding example, we get for ( )B tde : 

 
( ) ( ) ( )1 ( ).

2
B t B t B tde e dt e dB t= +  (4.15) 

Here, the drift is given by the first term of the second member of (4.15). 
 
4.3 The Solution Of The Black-Scholes-Samuelson Model 
 
Let us go back to the model (4.2) given by: 

 .)0(
),()()()(

0SS
tdBtSdttStdS

=
+= σμ

  (4.16) 

Using the Itô formula for lnS(t), we get: 

 

2

ln ( ) ( )
2

d S t dt dB tσμ σ
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

  (4.17) 

and so by integration: 

 

2

0ln ( ) ln ( ).
2

S t S t B tσμ σ
⎛ ⎞

− = − +⎜ ⎟
⎝ ⎠

  (4.18) 

Since for every fixed t, B(t) has a normal distribution with parameters (0,t) - t for 
the variance - (see Chapter 1, Definition 9.1), this last result shows that the r.v. 

S(t)/S0 has a log-normal distribution with parameters 
2

2,
2

t tσμ σ
⎛ ⎞⎛ ⎞

−⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
and so: 

 

2

0

2

0

( )log ,
2

( )var log .

S tE t
S

S t t
S

σμ

σ

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞

=⎜ ⎟
⎝ ⎠

 (4.19) 

Of course, from result (4.18), we obtain the explicit form of the trajectories of the 
S-process: 

 

2

2 ( )
0( ) .

t
B tS t S e e

σμ
σ

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠=  (4.20) 
This process is called a geometric brownian motion. 
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The fact of having the log-normality confirms the CRR process at the limit as, 
indeed, a lot of empirical studies show that, for an efficient market, stock prices 
are well adjusted with such a distribution. 
From properties of the log-normal distribution (see Chapter 1, section 5.4), we 
obtain: 

 

2

0

2

0

( ) ,

( )var ( 1).

t

t t

S tE e
S

S t e e
S

μ

μ σ

⎛ ⎞
=⎜ ⎟

⎝ ⎠
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (4.21) 

So, we see that the mean value of the asset at time t is given as if the initial 
amount S0 was invested at the non-risky instantaneous interest rate μ  and that its 
value is above or below S0  following the “hazard” variations modelled with the 
Brownian motion. 
We also see that the variance of S(t) increases with time in conformity with the 
fact that, for long time periods, variations of the asset are very difficult to predict. 
The explicit relation (4.20) can also be written in the form: 

 

2

2
( )

0

( ) .
t

B t

S t e
S e

σμ

σ

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠=  (4.22) 

This allows us to distinguish three cases: 

(i) 
2

.
2

σμ =   (4.23) 

If so, the evolution of the asset is that of a pure Brownian exponential. 

(ii) 
2

.
2

σμ >   (4.24) 

Here, S(t) will vary faster than the pure Brownian exponential and so, we may 
expect at certain times large gains but also large losses parallel with the time 
evolution of the pure brownian exponential 

(iii) 
2

.
2

σμ <   (4.25) 

Here, the situation is similar but the evolution is opposed to that of the pure 
Brownian exponential. 
From the second result of (4.21), it is also clear that the expectations of large 
gains - and losses! - are better for large values of σ ; that is why σ  is called the 
volatility of the considered asset. 
It follows that a market with high volatility will attract risk lover investors and 
not risk averse investors 
From the explicit form, it is not difficult to simulate trajectories of the S-process. 
The next figure shows a typical form. 
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Figure 4.1: a typical trajectory 
 
4.4 Pricing The Call With The Black-Scholes-Samuelson 
Model 
 
4.4.1 The Hedging Portfolio 
 
The problem consists in pricing the value of a European call of maturity T and 
exercise price K at every time t belonging to [0,T] as a function of t or the 
maturity at time t, T tτ = − , and of the value of the asset at time t, S=S(t) 
knowing that the non-risky instantaneous interest rate is r, so that if i is the non-
risky annual rate, we have: 
 1re i= + . (4.26) 
We will use the notation C(S,t) or, more frequently, ( , )C S τ . 
As in the CRR model, we introduce a portfolio P containing, at every time t of a 
call and a proportion α , which may be negative, shares of the underlying asset. 
The stochastic differential of P(t) is given by: 
 ( ) ( , ) ( )dP t dC S t dS tα= +  (4.27) 
or, from relation (4.16): 
 ( ) ( , ) ( ) ( ) ( ).dP t dC S t S t dt S t dB tαμ ασ= + +  (4.28) 
Using the Itô formula, in a correct form as proved by Bartels (1995) of the first 
initial form given by Black and Scholes (1973), we get: 

 

( )
2

2 2
2 2

1) ( , ) ( , ) ( , ) ( )
2

( ) ( , ) ( ).

C C CdP t S t S S t S t S S t dt
S t S

CS t S t S dB t
S

∂ ∂ ∂μ σ αμ
∂ ∂ ∂

∂ασ σ
∂

⎡ ⎤
= + + +⎢ ⎥

⎣ ⎦
⎡ ⎤+ +⎢ ⎥⎣ ⎦

 (4.29) 

Now, using the principle of AOA, this variation must be identical to that of the 
same amount invested at the non-risky interest, that is: 
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 [ ] .),()( dtStSCrdttrP α+=  (4.30) 
So, we get the following relation: 
 ( ) ( )rP t dt dP t=  (4.31) 

 

[ ]
2

2 2
2 2

( , )

1( , ) ( , ) ( , ) ( )
2

( ) ( , ) ( ).

r C S t S dt

C C CS t S S t S t S S t dt
S t S

CS t S t S dB t
S

α

∂ ∂ ∂μ σ αμ
∂ ∂ ∂

∂ασ σ
∂

+ =

⎡ ⎤
+ + +⎢ ⎥

⎣ ⎦
⎡ ⎤+ +⎢ ⎥⎣ ⎦

 (4.32) 

By identification, we get: 

 

[ ]
2

2 2
2 2

( , )

1( , ) ( , ) ( , ) ( ) 0,
2

( ) ( , ) 0.

r C S t S dt

C C CS t S S t S t S S t dt
S t S

CS t S t S
S

α

∂ ∂ ∂μ σ αμ
∂ ∂ ∂

∂ασ σ
∂

+ −

⎡ ⎤
+ + + =⎢ ⎥

⎣ ⎦
⎡ ⎤+ =⎢ ⎥⎣ ⎦

 (4.33) 

From the last equality, we get: 

 
( , ).C S t

S
∂α
∂

= −  (4.34) 

Substituting this value in the first equality of (4.33), we get after simplification: 

 

2
2 2

2 2

1( , ) ( , ) ( , ) ( , ) 0,
2

C C Cr C S t S t S S t S t S
S t S

∂ ∂ ∂ σ
∂ ∂ ∂

⎡ ⎤⎡ ⎤− − + =⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
 (4.35) 

or finally 

 

2
2 2

2 2

1( , ) ( , ) ( , ) ( , ) 0,
2

C C CrC S t r S t S S t S t S
S t S

∂ ∂ ∂ σ
∂ ∂ ∂

− + + + =  (4.36) 

a linear partial derivative equation of order 2 for the unknown function C(S,t) 
with as initial condition  

 

[ )
{ }
0, 0, ,

( , )
max 0, ,

t T
C S t

S K t T
⎧ ∈⎪= ⎨ − =⎪⎩

 (4.37) 

Using results from the heat equation in physics, for which an explicit solution is 
given in terms of a so-called Green function, known in this case, Black and 
Scholes (1973) got the following explicit form for the call value: 

 

( )
1 2

2

1

2 1

( , ) ( ) ( ),

1 log ( )( ) ,
2

,
( ).

r T tC S t S d Ke d

Sd r T t
KT t

d d T t
S S t

σ
σ

σ

− −= Φ − Φ

⎡ ⎤
= + + −⎢ ⎥− ⎣ ⎦

= − −
=

 (4.38) 
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Remark 4.2 Using relation (4.31), we get relation (3.15) for t=0 or Tτ = . 
The interpretation is of course already given in section 3. 
 
4.4.2 The Risk Neutral Measure And The Martingale Property 
 
As for the CRR model, it is possible to construct another probability measure Q 
on ( ), , ( )tΩ ℑ ℑ , called the risk neutral measure, such that the value of the call 
given by formula (4.38) is simply the expectation value of the present value of 
the “gain” at maturity time T. 
Using a change of probability measure for going from P to Q, with the famous 
Girsanov theorem (see for example Gikhman and Skorokhod,vol.III 
(1975),p.250), it can be shown that the new measure Q, which moreover is 
unique, can be defined by replacing in the stochastic differential equation (4.16) 
the trend μ  by r. 
Doing so, the explicit form of S(t) given by relation (4.26) becomes: 

 

2

2 '( )
0( )

r t
B tS t S e e

σ
σ

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠=  (4.39) 
where the process 'B  still an adapted standard Brownian motion and the value of 
C can be computed as the present value of the expectation of the final “gain” of 
the call at time T: 
 { }( )( )( , ) sup ( ) ,0 .r T t

QC S t e E S T K− −= −  (4.40) 
The risk neutral measure gives another important property for the process of 
present values of the asset values on [0,T]: 

 [ ]{ }.,0),( TttSe rt ∈−   (4.41) 
Indeed, under Q, this process is a martingale, so that (see Chapter 1, section 8) 
for all s and t such that :s t<  

 ( )( )  ( ) ( ).rt
sE e S t s t S s− ℑ < =  (4.42) 

This means that at every time s, the best statistical estimation of S(t) is given by 
the observed value at time s, a result consistent with the assumption of an 
efficient market. 
From relation (4.42), we get in particular: 

 ( ) 0( ) .rtE e S t S− =  (4.43) 
So, on average, the present value of the asset at any time t equals its value at time 
0. 
In conclusion, we see that the knowledge of the risk neutral measure avoids the 
resolution of the partial derivative equation and replaces it by the computation of 
an expectation, which is in general easier, as it only uses the marginal 
distribution of S(T). 



 
 
 
 
 
 
Black & Scholes extensions                                                                                191 

But we must add that, for more complicated derivative products, it may be more 
interesting, from the numerical point of view, to solve this partial derivative 
equation with the finite difference method, and particularly in the case of 
American options.  
 
4.4.3 The Call-Put Parity Relation  
 
From section 1, we know that the value of a put at maturity time T and exercise 
price K is given by: 
 ( ) { }( ), max 0, ( ) .P S T K K S T= −  (4.44) 
As for the call, we have: 
 ( ) { }( ), max 0, ( ) ,C S T K S T K= −  (4.45) 
and so, we get: 
 ( ) ( )( ), ( ), ( ) .C S T K P S T K S T K− = −  (4.46) 
And so, for the expectations: 
 ( )( ) ( )( ) ( )( ), ( ), ( ) .E C S T K E P S T K E S T K− = −  (4.47) 
Using the principle of mathematical expectation for pricing the call and the put, 
we get: 

 ( )0 0( ,0) ( ,0) ( ) .rT rTe C S e P S E S T K− = −  (4.48) 
We call this relation the general call-put parity relation as it gives the value of 
the put knowing the value of the call and vice versa 
Now, under the assumption of an efficient market, we can use property (4.43) to 
get  

 KeSSPeSCe rTrTrT −=− 000 )0,()0,(  (4.49) 
and so the put value is given by: 

 0 0 0( ,0) ( ,0) .rTP S C S S e K−= − +  (4.50) 
 
Remark 4.3 We can interpret this relation as follows: assume a portfolio having 
at time 0 a share of value S0, a put on the same asset with maturity T and an 
exercise price K and a sold call with the same maturity and exercise price; the 
value of the portfolio at time T is always K, whatever the value of S(T) is. 
 
From the call-put parity relation, we easily get the value of a put having the same 
maturity time T and exercise price K as for the call: 

 
( )( , ) ( , ) ,r T tP S t C S t S e K− −= − +  (4.51) 

and using the Black and Scholes result, we obtain: 
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σ
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5 EXERCISE ON OPTION PRICING 
 
Exercise 5.1 Let us consider a portfolio with Δ  shares of unit price 1000 Euro 
and an amount B invested at the non-risky interest rate of 4% per period. 
 
1°) What is the price C of a European call having 1050 Euro as exercise price, of 
maturity 2 periods if per period, the share increases by a quarter of its value with 
probability 0.75 and decreases by a third of its value with probability 0.25? 
What are the intermediate values of the call? 
 
2°) What is the composition of the hedging portfolio at time 0?  
 
3°) If the maturity has for value 2 weeks and the period is the day, give an 
estimation of the volatility and the trend of the considered asset. 
 
Solution:   
 
1°) 

 
512.5, 0,

315.38, 0,
194.08.

uu ud dd

u d

C C C
C C
C

= = =
= =

=  
 
2°)  

u

d

 where:
C= 54.07%( part of the asset),

( )
uC 346.57 (loan at the non-risky rate from the bank).

( )

d

u

C S B
C

S u d
dCB F

u d

= Δ +
−

Δ =
−
−

= = −
−

 

 
3°) 
We know that: 
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14 14

14 14

51000 1000 ,
4
21000 1000 ,
3

:
14 ,
1 ,

 :
5 514 14 ln ,
4 4
2 514 14 ln .
3 4

,  :
1 0.2231436 0.0079694,
28

360 0.0079694 2.868994,

1 0.2231
2 14

t t
n n

t t
n n

year

e

e

or
t days
n day
so

e

e

Finally we get

μ σ

μ σ

μ σ

μ σ

μ σ

μ σ

μ

μ

σ

+

−

+

−

× = ×

× = ×

=
=

= ⇒ + =

= ⇒ − =

= =

= × =

= 436 0.0298188,

360.0.0298188 0.565772.yearσ

=

= =

 

 
6 THE GREEK PARAMETERS 
 
6.1 Introduction 
 
The technical management of the trader of options, particularly by the brokers, 
uses the so-called Greek parameters to measure the impacts of small variations 
of parameters involved in formulas (4.38) and (4.52) for the pricing of options:  

, , , ,S r Kσ τ . 
 
(i) The delta coefficient 
This is an indicator concerning the influence of small variations SΔ of the asset 
price defined as follows: 

 
( , ) ( , ) ( ),

( , ).

C S S t C S t S
C S t
S

∂
∂

+ Δ ≈ + Δ Δ

Δ =
 (6.1) 
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This parameter is often used to cancel the variations of the asset value in the 
hedging portfolio. 
 
 (ii) The gamma coefficient 
It is defined as:  

 
2

2 ( , )C S t
S

γ ∂
=

∂
 (6.2) 

and so it may be seen as the delta of the delta. 
It gives a measure of the acceleration of the variation of the call and a refinement 
of the measure of the variation of the call using the Taylor formula of order 2: 

 
21( , ) ( , ) .

2
C S S t C S t t tγ+ Δ ≈ + ΔΔ + Δ  (6.3) 

 
(iii) The theta coefficient 
It gives the dependence of C with respect to the maturity ( )T tτ = − , and so also 
from the time t: 

 
.C C

t
∂ ∂θ
∂ ∂τ

⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 (6.4)
 

It follows the first order approximation: 
 ( , ) ( , ) .C S t t C S t tθ+ Δ ≈ − Δ   (6.5) 
For the maturity variations τ = T − t , we get: 
 ( , ) ( , ) .C S C Sτ τ τ θ τ+ Δ ≈ + Δ  (6.6) 
 
(iv) The elasticity coefficient 
Recall the economic definition of this coefficient which gives here: 

 
( , ) ( , )

( , )
C Se S t S t
S C S t

∂
∂

= ×  (6.7) 

and so: 

 

( , ) ( , )( ) ( , ) .
( , )

C C S S t C S t Se S t
C C S t S

Δ + Δ − Δ
= ≈  (6.8) 

 
(v) The vega coefficient 
It is the indicator concerning the measure of small variations of the volatility σ  
and so: 

 
( , )C S t∂υ

∂σ
= . (6.9) 

Thus, we have approximately for small variations ,σΔ  

 ( , ) ( , ) .C S S t C S t υ ο+ Δ ≈ + Δ  (6.10) 
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(vi) The rhô coefficient 
It concerns the non-risky instantaneous rate r and so: 

 ( , ).C S t
r

ρ ∂
=

∂   (6.11) 

 
6.2 Values Of The Greek Parameters 
 
The following table gives the values of the Greek parameters first for the call and 
then for the put.  

1

1

1

-r
2

-r
2 1

2

I.For the calls:
C1)delta(= )= ( ) 0
S

'( )2)gamma(= ) 0
S

C3)véga(= )= '( ) 0

C4)rhô(= )= e ( ) 0
r
C S5)théta(= )=rKe ( )+ '( ) 0

2

6) ( ) 0

II.For the puts:
P1)delta(=

r

d

d
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S d

K d

d d

C e d
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∂
∂

∂
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∂
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∂

∂
∂
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These values give interesting results concerning the influence of the considered 
parameters of the call and put values.  
For example, we deduce that the call and put values are increasing functions of 
the volatility, and the call increases as S increases but the put decreases as S 
increases. 
 
6.3 Exercises 
 
Exercise 6.1 
Let us consider an asset of value 1700 Euro and having as weekly variance 
0.000433. 
(i) What is the value of a call of exercise price 1750 Euro with maturity 30 weeks 
under a non-risky rate of 6%? 
(ii) Under the anticipation of a rise of 100 Euro of the underlying asset and of a 
rise of 0.000018 of the weekly variance, what will be the consequences of the 
call and put values? 
 
Solutions: 
(i) The values of the parameters necessary to compute the call value using the 
Black and Scholes formula are: 

2 2
. . .0.00043 52 0.00043 0.2236, 0.47286,

30 . 0.576923 , 1750, 1700,
6% ln(1 ) 0.05827.

week year year

weeks year K S
i r i

σ σ σ

τ

= ⇒ = × = =

= = = =
= ⇒ = + =

 

It follows that: 
2

1 1

1

2 1 2

1

1 ln ( ) 0.09760272,
2

( ) 0.5388762,

0.01637096, ( ) 0.4934692,

( , ) ( ) 81.07 .r

Sd r d
K

d

d d d

C S S d Ke Euroτ

στ
σ τ

σ τ

τ −

⎡ ⎤
= + + ⇒ =⎢ ⎥

⎣ ⎦
Φ =

⇒ = − = − Φ =

= Φ − =

 

Using call-put parity relation; we get for the put value  
73.07 .rP Ke C S P Euroτ−= + − ⇒ =  

(ii) Rise of the underlying asset: 
We know that: 
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1

( , ) ( , ) ( , ) ,  

 ( , ) ( ),

so :
(1700 100, ) 81.07 100 0.5388762 135.95 .

CC S S C S S S
S

C S d
S

C Euro

∂τ τ τ
∂

∂ τ
∂

τ

+ Δ = + Δ

= Φ

+ = + × =

 

For the put, we obtain: 
( , ) ( ) ( ) 27.1 .rP S S Ke C S S S S Euroττ −+ Δ = + + Δ − + Δ =  

 (iii) Rise of the volatility: 
The value of the new weekly variance is now given by: 
0.000433 0.00018 0.000613+ =  
and so the new yearly variance and volatility are given by 

,1785385.0031876.0 =  
and consequently, the variation of the yearly volatility is given by: 

.284852.01500533.01785385.0 =−=Δσ  
As the increase in volatility comes after that of the asset value, we have  

1

( , , ) ( , , ) ,

with:

( ).

CC S S C S S

C d

∂σ σ τ σ τ σ
∂σ

∂ τ
∂σ

+ Δ + Δ = + Δ + Δ

′= Φ

 

But: 

,39704658.0
2
1)( 2

1

2
1

==Φ′
−

d

ed
π

 

and so: 

542.84.C∂
∂σ

=  

Finally, we get: 

.41.150),,(),,( FCSSCSSC =Δ+Δ+=Δ+Δ+ σ
∂σ
∂τστσσ  

For the variation for the put, we use the call-put parity relation and so: 
( , , ) ( , , ) ( ) 42.56 .rP S S C S S Ke S S Fτσ σ τ σ σ τ −+ Δ + Δ = + Δ + Δ + − + Δ =  

 
Exercise 6.2 
For the following data, compute the values of the call and the put and the Greek 
parameters 

100, 98, 30 days, 0,01664, 8%.weekS K iτ σ= = = = =  
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Solution 
 

Yearly vol. 0.12  
Maturity. 0.08219  
r=ln(1+i) 0.076962  

   
Results call put 

   
Price 3.04721 0.42926 
Delta 0.7847 -0.2153 
Vega 8.3826 idem 
Theta 11.924 4.334 

Gamma 0.08499 idem 
Rhô 6.199 -1.805 

Table 6.1: example option computation 
 
7 THE IMPACT OF DIVIDEND DISTRIBUTION 
 
If between t and T, the asset distributes N dividends of amounts 1,..., ND D  at 
times: 

 1 2(0 ) ( )Nt t t t T< < < < < < , (7.1) 
the impact of the value of a European call is the following : as the buyer of the 
call cannot receive these dividends, it suffices to compute the present value at 
time t of these dividends and to subtract the sum from the asset value at time t so 
that the call value is now: 

 
.,...,1,

),,(),...,;,(
1

1

Njtt

eDSCDDSC

jj

N

j
jN

jr

=−=

−=
−

∑
=

τ

ττ
τ

 (7.2) 

Of course, the most usual case is N=1. 
If we assume that the distribution of dividends is given with a continuous payout 
at rate D per unit of time, 

0 t Tt' t'+dt'

Ddt'

 
Figure 7.1: continuous "payout" 
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the capitalised value is De τ and so the value of the call is given by: 
 ( , ; ) ( , ).DtC S D C Seτ τ−=  (7.3) 
 
8 ESTIMATION OF THE VOLATILITY 
 
8.1 Historic Method 
 
This method is based on the data of the underlying asset evolution in the past, for 
example the n daily values 

 ( )nSSS ,...,10 . (8.1)  
Let us consider the following sample of the consecutive ratios: 

 
( ) 1

1
0 1

,..., ,..., .n
n

n

SSR R
S S −

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (8.2) 

From the log-normal distribution property, we have: 

 

2

1

ln ( )
2 (0,1),

with , 1,..., .

t

t
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t

R
N

SR t n
S

σμ

σ

−

− −

= =

 (8.3) 

It follows that the random sample ( )nRR ln,...,ln 1  can be seen as extracted from 

a normal population ( )2',μ σ with: 

 

2

' .
2

σμ μ= −  (8.4) 

The classical results of mathematical statistics give as best estimators: 

 

1 1
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∑

 (8.5) 

To get an unbiased estimator of the variance, we have to use: 

 
22 ˆ

1
ˆ̂ σσ

−
=

n
n

 (8.6) 

or: 
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1
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Example 8.1 On the basis of a sample of 27 weekly values of an asset starting 
from the initial value 26.375 Euro, the following weekly estimations are found: 

2

ˆ 0.016732,
ˆ 0.005216.
μ

σ

=

=
 

Consequently, as the parameters of the Black and Scholes model must be 
evaluated on a yearly basis, we get  

.
2

.

.

ˆ 52 0.016732 0.870064 0.87,
ˆ 52 0.005216 0.271232,

ˆ 0.271232 0.520799 0.52.

an

an

an

μ

σ

σ

= × = ≅

= × =

= = ≅

 

 
8.2 Implicit Volatility Method 
 
This method assumes that the Black and Scholes formula calibrates the market 
values of the observed calls well. 
Theoretically, an inversion of the Black and Scholes formula gives the value of 
the volatility σ . 
On the basis of several observations of the calls for the same underlying asset, we 
can use the least square statistical method to refine the estimation. 
 
Example 8.2 
Using the data of Excercise 6.2, we assume that we have an observed value of 
the call 3.04715, but without knowing the volatility. 
The next table gives the results using a step by step approximation method. 
 

weekly vol.annual vol. call value
0.02 0.144 3.26 

0.015 0.1081 2.95 
0.017 0.1225 3.069 
0.016 0.1153 3.008 

0.0165 0.1189 3.038 
0.01664 0.1199 3.04713

Table 8.1: volatility computation 
 
So, we do find the correct volatility value 0.12. 
 
Remark 8.1 The main difficulty is to select the historical data. 
The set must not be too long or too short in order to avoid perturbed periods 
introducing strong biases in the results. 
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Moreover, we always work with the assumption of a constant volatility that we 
will suppress in section 10. 
 
9 BLACK AND SCHOLES ON THE MARKET 
 
9.1 Empirical Studies 
 
Since the opening of the CBOT in Chicago in 1972, numerous studies have been 
carried out for testing the results of the Black and Scholes formula.  
In the case of efficient markets, the conclusions are the following: 
 
(i)   the non-risky interest rate has little influence on the option values, 
(ii)  the Black and Scholes formula underestimates the market values for calls 
with short maturity times, for calls “deep out of the money” (S/K<0.75) and for 
calls with weak volatility, 
(iii) the Black and Scholes formula overestimates the market values for calls 
“deep in the money” (S/K<1.25) and for calls with high volatility. The put values 
are often underestimated particularly in the “out of the money” (S>>K) case. 
(iv) the puts are often underestimated particularly when they are out of the 
money(S<<K). 
 
9.2 Smile Effect 
 
If we compute the volatility values with the implicit method in different times, in 
general, the results show that the volatility is not constant, invalidating thus one 
of the basic assumptions of the considered Black and Scholes model. 
The graph of the volatility as a function of the exercise price often gives a graph 
with a convex curve, a result commonly called the “smile effect”. 
But sometimes, concave functions are also observed. 
Although, theoretically, volatilities for the pricing of calls and puts are identical, 
in practice, some differences are observed; they are assigned to differences of 
“bid-offer spread” and to the methodology of the implicit method used at 
different times. 
The fact that it is important to consider option pricing models with non-constant 
volatility is one of the motivations of the next model.  
 
10 THE JANSSEN-MANCA MODEL  
 
In this section, we present a new extension of the fundamental Black and Scholes 
(1973) formula in stochastic finance with the introduction of a random economic 
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and financial environment using Markov processes and which we owe to Janssen 
and Manca (1999). 
In preceding papers (Janssen et al (1995), Janssen et al (1997), Janssen et al 
(1998), Janssen and Manca (2000)), these authors already show how it is useful 
to introduce Markov and semi-Markov theory in finance, with the assumption 
that the evolution of the asset follows a semi-Markov process, homogeneous or 
non-homogeneous, and how to price options in such new models. The main idea 
of this approach is to insert a strong dependence of the asset evolution as a 
function of the preceding value. 
The construction of this new model starts from the classical CRR model with one 
period to obtain a new continuous time model satisfying the assumption of 
absence of arbitrage.   
One of the main potential applications of our model concerns the possibility to 
get a new way of acting with the Black and Scholes formula with information 
related to the economic and financial environment, particularly concerning the 
volatility of the underlying asset. 
This new model also gives the possibility to take into account anticipations of 
investors in such a way as to incorporate them in their own option pricing. 
By the same philosophy, the model can be used to construct scenarios and 
particularly in the case of stress in a VaR approach. 
 
10.1 The Markov Extension Of The One-Period CRR Model 
 
10.1.1 The Model 
 
Starting on a complete probability space ( )P,, ℑΩ , let us consider a one-period 
model for the evolution of one asset having the known value 0)0( SS =  at time 0 
and random value S(1) at time 1. 
The economic and financial environment is defined with random variables 0 1,J J  
representing the environment states respectively at time 0 and time 1. These 
random variables take their values in the state space { }1,...,E m=  and are defined 
on the probability space by: 

 
( )
( )

0

1 0

, 1,..., ;

, , 1,..., ,
i

ij

P J i a i m

P J J i p i j m

= = =

= = =
 (10.1) 

where: 
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 1

1

0, 1,..., ;

1,

0, , 1,..., ,

1,  1,..., .

i
m

i
i

ij

m

ij
j

a i m

a

p i j m

p i m

=

=

≥ =

=

≥ =

= =

∑

∑

 (10.2) 

Furthermore, let us introduce the following function of 0 1,J J : 
0 1J Ju ,

0 1J Jd , 

0 1J Jq such that, a.s.: 

 0 1 0 1 0 1

0 1 0 1

0 ,

1,  1 ,
J J J J J J

J J J J

d r u

d r

< < <

< <
 (10.3) 

 
0 1

0 1.J Jq< <  (10.4) 

The one-period model, related to the process { }(0), (1)S S , is the following: given 

0 1,J J  and that 0(0)S S= , the asset has the following evolution: it goes up from 

0S  to 
0 1 0J Ju S  with the conditional probability 

0 1J Jq or goes down from 0S  to 

0 1 0J Jd S  with the conditional probability 
0 1

1 J Jq− ; moreover, the non-risky interest 
rate of this period has the value 

0 1J Jν defined by:  
 

0 1 0 1
1.J J J Jrν = −  (10.5) 

Given 0 1,J J , we have that: 

 

( )
( )
( )

( )

( ) ( )

0 1 0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 0 0 0 0

0 0 1 0

0 0 1 0

0 1 0 0 0

0 0 0 0
1

0 0
1 1

(1) , , ,

(1) , , 1 ,

(1) , , (1 ) ,

(1) , ( (1 ) ),

(1) ( (1 ) )

J J J J

J J J J

J J J J J J J J

m

J j J j J j J j J j
j

m m

ij ij ij ij ij
i j

P S u S J J S q

P S d S J J S q

E S J J S q u S q d S

E S J S p q u S q d S

E S S P J i p q u q d S

=

= =

= =

= = −

= + −

= + −

⎡ ⎤= = + −⎣ ⎦

∑

∑ ∑ 0.

 (10.6) 

One of the basic concepts of stochastic finance is the absence of arbitrage 
possibility. In fact, it is equivalent to say that the process { }1 (0), (1)r S S− is a 

martingale where 1r ρ= +  and ρ  is an adequate non-risky interest rate for 
computing the present value of S(1) at time 0. 
Here, we must take into account the possible information of the investor 
concerning the environment; at time 0, in addition to the knowledge of 0S , 
different information sets may be available. Three cases are possible: 
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1) knowledge of ( )0 1,J J  
In this case the martingale condition: 
 ( )

0 10 1 0 0(1) , , J JE S J J S r S=  (10.7) 
becomes: 
 

0 1 0 1 0 1 0 1 0 10 0 0(1 )J J J J J J J J J Jr S q u S q d S= + −  (10.8) 
or 
 

0 1 0 1 0 1 0 1 0 1
(1 ) .J J J J J J J J J Jr q u q d= + −  (10.9) 

This last condition is exactly the same as the CRR model; this means that the 
new conditional probability for which the martingale condition is satisfied is 
given by: 

 0 1 0 1

0 1

0 1 0 1

J J J J
J J

J J J J

r d
q

u d
−

=
−

. (10.10) 

This value defines the so-called risk neutral conditional probability measure. 
As an example of application in option pricing, let us consider that we want to 
study a European call option of maturity T=1 and exercise price K bought at time 
0. 
It follows that at time 1 or at the end of the maturity, the value of the option will 
be given by the random variable: 

 { }( (1),0) max 0, (1) .C S S K= −  (10.11) 
We compute the price of the option at time 0 with a maturity period of value 1, as 
the conditional expectation under the risk neutral conditional probability 
measure, denoted 

0 1, 0( ,1)J JC S , of the present value of the gain at time 1:  

 
{ }( )

{ } { }
0 1 0 1

0 1 0 1 0 1 0 1 0 1

1
, 0 0 1

1
0 0

( ,1) max 0, (1) ,

max 0, (1 )max 0, .

J J J J

J J J J J J J J J J

C S E r S K J J

r q u S K q d S K

−

−

= −

⎡ ⎤= − + − −⎣ ⎦
 (10.12) 

 
2) knowledge of 0J  
Let us begin to see what the martingale condition becomes. 
We have that: 
 ( ) ( )( )0 0 0 1 0 0 0(1) , (1) , , , .E S J S E E S J J S J S=  (10.13) 

As the assumption of AOA is now satisfied for the conditioning with 0 1,J J , we 
can write that 
 ( ) ( )0 10 0 0 0 0(1) , , ,J JE S J S E r S J S=  (10.14) 

and so: 
 ( ) ( )0 10, 0 0 0 0(1) , , ,J JE S J S S E r J S=  (10.15) 
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and finally: 
 ( ) 00, 0 0(1) , JE S J S Sς=  (10.16) 

where: 

 
0 0 0

1

m

J J j J j
j

p rς
=

= ∑ . (10.17) 

These last two formulas show that, given, at time 0, the initial environment state, 
the AOA is still valid with as risk neutral interest 
 

0 0
1 ,J Jρ ς= −  (10.18) 

or 

 
0 0 0

1

,
m

J J j J j
j

pρ ν
=

= ∑  (10.19) 

with 
0J jr  given by relation (10.5) which is perfectly coherent as relation (10.19) 

represents the conditional mean of the non-risky interest rate given 0J . 
 
3) no environment knowledge 
In this last case, the investor just observes the initial value of the stock 0S  as in 
the CRR or the Black and Scholes models. As above we can compute the 
expectation of S(1) as follows: 
 ( ) ( )( )0 0 0(1) (1) ,E S S E E S J S=   (10.20) 

and from relation (10.16): 
 ( ) ( )00 0 0(1) .JE S S S E Sς=  (10.21) 

As, from relation (10.17), we get that: 

 ( )0 0
1 1

.
m m

J i ij ij
i j

E S a p rς
= =

= ∑ ∑ , (10.22) 

it follows that the AOA is still true in this case with a non-risky interest rate 
ρ defined by: 

 
1 1

1 .
m m

i ij ij
i j

a p rρ
= =

= − ∑ ∑  (10.23) 

From this last relation and relation (10.19), we get 

 

i
1 1 1

1 1

1

(1 )

    

    .

m m m

i ij ij
i i j

m m

i ij ij
i j

m

i i
i

a a p

a p

a

ρ ν

ν

ν

= = =

= =

=

= − −

=

=

∑ ∑ ∑

∑ ∑

∑

 (10.24) 
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Once more, these last two relations show the perfect coherence concerning the 
non-risky interest rates to be used with regard to the three environment 
information sets that we can have. 
 
10.1.2 Computational Option Pricing Formula For The One-Period Model 
 
In the preceding section, relation (10.12) gives the value of a call option at time 0 
given the initial and final environment states 0 1,J J . We now compute the price 
of the option, firstly with only the knowledge at time 0 of the initial environment 
state 0J , then with only the knowledge of the final state 1J  and finally with no 
knowledge of the initial and final states. 
 
1) with the knowledge of 0J  
This value, denoted by 

0 0( ,1)JC S , is nothing else than the conditional expectation 
of 

0 1 0( ,1)J JC S  given 0J : 

 ( )0 0 10 0 0 0( ,1) ( ,1) , ,J J JC S E C S J S=  (10.25) 

or 

 
0 0 00 0

1
( ,1) ( ,1).

m

J J j J j
j

C S p C S
=

= ∑  (10.26) 

 
2) with the knowledge of 1J  
Let 0( ,1)jC S  represent the value of the call in this case when 1J j= ; we have: 

 ( )0 0 1 0
1

( ,1) ( ,1)
m

j
ij

i
C S P J i J j C S

=

= = =∑ . (10.27) 

From the Bayes formula, we get: 

 

( ) ( )
( )

0 1
0 1

1

1

,

                         i ij
m

k kj
k

P J i J j
P J i J j

P J j
a p

a p
=

= =
= = =

=

=

∑

 (10.28) 

and so, from relation (10.27): 

 0 0
1

1

( ,1) ( ,1).
m

i ijj
ijm

i
k kj

k

a p
C S C S

a p=

=

= ∑
∑

 (10.29) 

Let us note that this case is useful if the investor wants to anticipate the final 
value of the environment state at time 0. 
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3) with no knowledge of 0J and 1J  
In this case, with the help of relation (10.26), we can write that the call value 
represented by 0( ,1)C S , is given by: 

 0 0
1

( ,1) ( ,1),
m

i i
i

C S a C S
=

= ∑  (10.30) 

or with the help of relation (10.29) with: 

 0 0
1 1

( ,1) ( ,0).
m m

j
k kj

j k

C S a p C S
= =

= ∑∑  (10.31) 

 
10.1.3 Examples 
 
The application of our one-period model is already useful with only two or three 
states. Indeed, it is quite natural to consider one state, for example state 0 to 
model the normal economic and financial environment; then we can add a 
supplementary state − 1 to represent an abnormal situation like a crash or a 
doped situation. 
With three states, we can separate the crash possibility represented by state − 1 
from the doped situation represented by state 1, state 0 always being the normal 
case. 
 
Example 10.1: A two-states model 
As said just above, let the state set be: 
 { }0,1I =  (10.32) 
with state 0 as the normal economic and financial situation environment and state 
1 as the exceptional in the sense of, for example, a crash or doped  situation. 
Numerical data are the following: 

 

(0.95,0.05),
0.98 0.02 1.03 1.05

, ,
0.60 0.4 1.05 1.03

1.3 1.1 0.7 0.5
, .

1.06 1.2 0.4 0.6

=

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

a

P r

U D

 (10.33) 

 
Example 10.2: A three-states model 
Here, let the state set be: 
 { }1,0,1 .I = −  (10.34) 
State 0 represents the normal economic and financial situation environment, state 
− 1 the exceptionally bad situation in the sense of for example a crash situation 
and state 1 as exceptionally good as a doped effect of the Stock Exchange for 
example. 
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Numerical data are the following: 

 

(0.05,0.90,0.05),
0.6 0.3 0.1 1.05 1.03 1.02

0.02 0.96 0.02 , 1.05 1.03 1.02 ,
0.6 0.35 0.05 1.06 1.04 1.03

1.07 1.10 1.20 0.5 0.7 0.8
1.07 1.10 1.20 , 0.6 0.7 0.8
1.07 1.09 1.15 0.65 0.7 0.8

=

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦

a

P r

U D .⎥
⎥

 (10.35) 

For both examples, we will consider a European call option with 
0 100  95.S and K= =  

Results are given in Table 10.1. 
 

S 100           
K 95           
            

Example 10.1            
transition a1 a2 a3 p(ij) r(ij) u(ij) d(ij) q(ij) Cij(100,1) Ci(100,1) C(100,1) 

            
0 to 0 0.95 0.05  0.98 1.03 1.3 0.7 0.55 18.68932 18.57744  
0 to 1    0.02 1.05 1.1 0.5 0.9167 13.09524   

            
1 to 0    0.6 1.05 1.06 0.4 0.9848 10.31746 13.1484  
1 to 1    0.4 1.03 1.2 0.6 0.7167 17.39482   

           18.27158 
Example 10.2            

            
 0.05 0.9 0.05         

bad to bad    0.6 1.05 1.07 0.5 0.9649 11.02757 11.56895  
bad to normal    0.3 1.03 1.1 0.7 0.825 12.01456   
bad to good    0.1 1.02 1.2 0.8 0.55 13.48039   

            
normal to bad    0.02 1.05 1.07 0.6 0.9574 10.94225 12.02243  

normal to normal    0.96 1.03 1.07 0.7 0.8919 12.01456   
normal to good    0.02 1.02 1.07 0.8 0.8148 13.48039   

            
good to bad    0.6 1.02 1.2 0.65 0.6727 11.05121 7.67948  

good to normal    0.35 1.02 1.2 0.7 0.64 11.7357   
good to good    0.05 1.03 1.15 0.8 0.6571 12.76006   

           11.82274 
Table 10.1: European call option examples 
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10.2 The Multi-Period Discrete Markov Chain Model 
 
Let us now consider a multi-period model over the time interval [ ]0,n , n being an 
integer larger than 1 representing the maturity time of the option, always under 
the assumption of absence of arbitrage as in section 1. 
To obtain useful results, we will still follow the fundamental presentation of the 
CRR model (Cox, Rubinstein (1985)) but adapted for our Markov environment in 
such a way that tractable results may be found. 
 
1)  result with knowledge of 0 ,..., nJ J  
Let us begin with a discrete time model with n periods and suppose that given 

0 0,..., , (0)nJ J S S=  with 0 , ,nJ i J j= =  the up and down parameters, the non-
risky interest rate and the probabilities of an up movement for each period are the 
same for all periods and given respectively by , , ,ij ij ij iju d r q . 
Then, the asset value S(n) at time n is given by: 
 

0 1 1 0( )
n nj j j jS n V V S

−
= ⋅ ⋅  (10.36) 

where the conditional distributions of the random variables V are defined as: 

 
1

 with probability  ,
, .

 with probability  1- ,n n

ij ij
J J

ij ij

u q
V i j I

d q−

⎧⎪= ∈⎨
⎪⎩

 (10.37) 

Moreover, we suppose that, for each n, the random variables 
0 1 1

,...,
n nJ J J JV V

−
 are 

conditionally independent given 0 ,..., .nJ J  
Now if the random variable nM  represents the total number of up movements on 
[ ]0,n , the asset value at time n is given by: 
 0( ) ( ) ( )n nM n M

ij ijS n u d S−=  (10.38) 
and consequently: 

 
0

( )ln ln ( ) ln .n ij n ij
S n M u n M d
S

= + −  (10.39) 

Given 0 0 0,..., , (0)n nJ j J j S S= = = , the conditional distribution of nM  is a 
binomial distribution with parameters ( , )ijn q . It follows that: 

 0 0 0
0

( )ln ,..., , (0) ( ln (1 ) ln )n n ij ij ij ij
S nE J j J j S S n q u q d
S

⎛ ⎞
= = = = + −⎜ ⎟

⎝ ⎠
.(10.40) 

Concerning the conditional variance, we get: 

 

2

0 0 0
0

( )var ln ,..., , (0) (1 ) ln .ij
n n ij ij

ij

uS n J j J j S S n q q
S d

⎡ ⎤⎛ ⎞⎛ ⎞ ⎢ ⎥= = = = − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
(10.41) 
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Choosing now for the up probability on the n periods, the risk neutral probability 
given by relation (10.10): 

 1 1

1

1 1

ij ij
ij

ij ij

r d
q

u d
−

=
−

, (10.42) 

it is now clear that, under our assumptions, for each n, given 0 0,..., , (0)nJ J S S=  
with 0 , ,nJ i J j= =  we have a CRR model, so that their results recalled in the 
beginning  of this chapter concerning the European call are valid. Consequently, 
we get the value of the European call with exercise price and maturity n as the 
present value of the expectation of the “gain” at time n under the risk neutral 
measure, that is: 

 { }
0 0 0 1

0
0

( , ) ( , , ,..., )

1 (1 ) max .

ij n

n
k n k k n k
ij ij ij ijn

kij

C S n C S n J i J J j

n
q q u d S K

kν
− −

=

= = =

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑

 (10.43) 

After some computation, we can obtain the following expression (see Cox and 
Rubinstein (1985)): 

0

0 0 1

( ; , ' ) ( ; , ),  if ,
( , , ,..., )

0                                                 if ,

ij ij ij ij ijn
ijn

ij

KS B a n q B a n q a n
C S n J i J J j

a n

ν
⎧ − <⎪= = = ⎨
⎪ >⎩

 (10.44) 

where ( ; , )B x m α  is the value of the complementary binomial distribution 
function complementary with parameters ,m α at point x  and 

 

0ln( / )
1 ,

ln( / )

' .

n
ij

ij
ij ij

ij
ij ij

ij

K d S
a

u d

u
q q

r

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦

=

 (10.45) 

The result (10.44) can be seen as the discrete time extension of the Black and 
Scholes formula given the environment: 
 0 0,..., , (0)nJ i J j S S= = = . (10.46) 
2)  result with knowledge of 0J i=  
If we only know the initial state of the environment 0J i= , it is clear that the 
value of the call is given by 

 ( )
0 0

1
( , ) ( , )

m
n

i ij ij
j

C S n p C S n
=

= ∑  (10.47) 

where, of course: 
 ( ) .n n

ijp⎡ ⎤ =⎣ ⎦ P  (10.48) 

3)  result with knowledge of nJ j=  
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Proceeding as in the preceding section, the use of Bayes formula gives the 
following result now on n periods instead of one: 

 

( ) ( )
( )

0
0

( )

( )

0

,

                          

n
n

n

n
i ij

m
n

k kj
k

P J i J j
P J i J j

P J j

a p

a p
=

= =
= = =

=

=

∑

 (10.49) 

and so the value of the call given nJ =j, represented by 0( , )jC S n , is given by: 

 
( )

0 0
( )1

0

( , ) ( , ).
nm

i ijj
ijm

ni
k kj

k

a p
C S n C S n

a p=

=

= ∑
∑

 (10.50) 

4) result with no environment knowledge 
Finally if we have no knowledge of the initial environment state but just its 
probability distribution given by (10.1), the value of the call denoted 0( , )C S n is 
given by 

 0 0
1

( , ) ( , )
m

i i
i

C S n a C S n
=

= ∑  (10.51) 

or by 

 ( )
0 0

1 1

( , ) ( , ).
m m

n j
k kj

j k

C S n a p C S n
= =

= ∑∑  (10.52) 

 
10.3 The Multi-Period Discrete Markov Chain Limit Model 
 
To construct our continuous time model on the time interval [0,t], t being the 
maturity time of the considered option, let us begin to consider a multi-period 
discrete Markov chain model with n periods where each period has length h so 
that we have equidistant observations at time 0,h,2h,...,nh with /n t h= ⎢ ⎥⎣ ⎦ .  
We also suppose that in the approximated discrete time model, the environment 
process is now a homogeneous ergodic Markov chain defined by relations (10.1) 
and (10.2) and that (see Cox and Rubinstein (1985),p. 200) or relations (3.8), 
section 3.1 of this chapter), for each n, given 0 0,..., , (0)nJ J S S=  with 

0 , ,nJ i J j= =  we select, in each subinterval [ ], ( 1)kh k h+ , the following up and 
down parameters: 
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1 1

1

, ,

1 1 ,
2 2

ij ij

k k k k

k k

t t
n n

j j j j

ij
j j

ij

u e d e

tq
n

σ σ

μ
σ

+ +

+

−
= =

= +
 (10.53) 

depending thus on the two m m×  non-negative matrices: 
 ,ij ijμ σ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . (10.54) 

From relations (10.40) and (10.41), it follows that, for all n: 

 0 0 0
0

( )ln ,..., , (0) ,n n ij
S nE J j J j S S t
S

μ
⎛ ⎞

= = = =⎜ ⎟
⎝ ⎠

 (10.55) 

 2
0 0 0

0

( )var ln ,..., , (0) .n n ij
S n J j J j S S t
S

σ
⎛ ⎞

= = = =⎜ ⎟
⎝ ⎠

 (10.56) 

As our conditioning implies that we can follow the reasoning of Cox and 
Rubinstein (1985), we know that, for n → +∞ : 

 2

0

( )ln ( , ),ij ij
S t N t t
S

μ σ≺  (10.57) 

where j0=i as the initial environment state observed at t=0 and j the environment 
state at time t. 
Concerning the non-risky interest rates, we also suppose that, for all i and j, there 
exists 1ijν >  such that the new return rate for all the periods ( ),( 1) )kh k h+ , 
denoted îjr , for n → +∞ , satisfies the following condition: 

 ˆ(1 ) (1 )n t
ij ijr r+ → + . (10.58) 

Now let 0( , )ijC S n represent the value at time 0 of a European call option with 
maturity n and exercise price K. 
Using the proof of the Black and Scholes formula given by Cox and Rubinstein 
((1985), pp. 205-208) but here with our parameters depending on all of the 
environment states i and j, we get under the conditions (10.53) and (10.58), for 
fixed t: 
 0 0( , ) ( , )ij ijC S n C S t→  (10.59) 
where: 

 

0 0 1 ,2

0
1

,1

,2 ,1

( , ) ( ) ( ),

ln
1 ,
2

.

t t

t

t

t
ij ij ij ij

ij
ij ij

ij

ij ij ij

C S t S d Kr d

S
Kr

d t
t

d d t

σ
σ

σ

−

−

= Φ − Φ

= +

= −

 (10.60) 
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This result gives the value of the call at time 0 with i as initial environment state 
and j as environment state observed at time t, represented from now on by .tJ  
If we want to use the classical notation in the Black and Scholes (1973) 
framework, we can define the instantaneous interest rate intensity ijρ  such that: 

 ij
ijr eρ=  (10.61) 

so that  the preceding formula (10.60) becomes now: 

 

0 0 1 ,2

2

,1

,2 ,1

( , ) ( ) ( ),

1 ln ,
2

.

ij

t t t

t

t

t
ij ij ij

ij
ij ij

ij

ij ij ij

C S t S d Ke d

Sd t
Kt

d d t

ρ

σ
ρ

σ

σ

−= Φ − Φ

⎛ ⎞⎛ ⎞
⎜ ⎟= + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

= −

 (10.62) 

 
10.4 The Extension Of The Black-Scholes Pricing Formula 
With Markov Environnment: The Janssen-Manca Formula  
 
The last result (10.62) gives a first extension of the Black and Scholes formula in 
continuous time from the knowledge of the initial and final environment states, 
respectively 0 , tJ J  where tJ  represents, as said above, the state of the 
environment at time t. 
Now, always with the assumption that the Markov chain with matrix P is 
ergodic, we can extend results (10.43), (10.47) (10.50) and (10.52) valid for our 
discrete multi-period model to our continuous time model thus giving the 
following main result. 
 
Proposition 10.1 (Janssen and Manca (1999)) 
Under the assumption that the Markov chain of matrix P of the environment 
process is ergodic and that given the initial environment state i I∈ and the 
environment state at time t is j I∈ , the non-risky rate is given by ijρ and the 
annual volatility by ijσ , then we have the following results concerning the 
European call price at time 0 with exercise price K and maturity t: 
(1) with knowledge of state 0 , tJ i J j= = , the call value is given by result (10.62), 
(2) with knowledge of state 0J i= , the call value represented by 0( , )iC S t  is 
given by: 

 0 0
1

( , ) ( , ),
m

i j ij
j

C S t C S tπ
=

= ∑  (10.63) 

(3) with knowledge of state tJ j= , the call value represented by 0( , )jC S t  is 
given by: 
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 0 0
1

( , ) ( , ),
m

j
i ij

i
C S t a C S t

=

= ∑  (10.64) 

(4) without any environment knowledge, the call value represented by 0( , )C S t  is 
given by: 

 0 0
1

( , ) ( , )
m

i i
i

C S t a C S t
=

= ∑  (10.65) 

or 

 0 0
1

( , ) ( , )
m

j
j

j

C S t C S tπ
=

= ∑ . (10.66) 

 
Proof Result (1) is proved above. 
Result (2) follows from relation (10.47) letting n go to ∞+  and then using result 
(1) and the assumption of ergodicity on the environment matrix chain P . 
Result (3) can easily be deduced from result (2) and relation (10.50). 
Finally, result (4) follows immediately from relations (10.51) or (10.52) and 
results (2) and (3).  
 
Example 
The Example 10.1 is now treated in Table 10.2 with the following annual 
volatility matrix 
 

 
0.20 0.30
0.25 0.35

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
σ  

 
Using for the matrix P being given by relation (10.33), using relation 2(9.77), the 
asymptotic distribution is given by:  
 
 [ ] [ ]1 2, 0.977742,0.032258π π= =π  
 

Example 10.1     
K 80  K 95 
S 100  S 100 

0 to 0   0 to 0  
 1-t Cij(100,t) 1-t Cij(100,t)
 0.25 20.45 0.25 7.23 
 0.5 21.10 0.5 8.98 
 0.75 21.84 0.75 10.42 
 1 22.61 1 11.67 
     

1 to 0 0.25 20.57 0.25 8.08 
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 0.5 21.52 0.5 10.24 
 0.75 22.56 0.75 11.98 
 1 23.59 1 13.49 
     

0 to 1 0.25 20.79 0.25 8.97 
 0.5 22.13 0.5 11.54 
 0.75 23.48 0.75 13.57 
 1 24.76 1 15.33 
     

1 to 1 0.25 21.12 0.25 9.88 
 0.5 22.87 0.5 12.85 
 0.75 24.53 0.75 15.18 
 1 26.07 1 17.18 
     
     

? To 1 0.25 20.8065 0.25 9.0155
 0.5 22.167 0.5 11.6055
 0.75 23.5325 0.75 13.6505
 1 24.8255 1 15.4225
     

? To 0 0.25 20.456 0.25 7.2725
 0.5 21.121 0.5 9.043
 0.75 21.876 0.75 10.498
 1 22.659 1 11.761
     

? To ? 0.25 20.46731 0.25 7.328726
 0.5 21.15474 0.5 9.125661
 0.75 21.92944 0.75 10.59969
 1 22.72889 1 11.87911

Table 10.2 
 
 In conclusion, the Janssen-Manca approach gives for the first time a new family 
of Black and Scholes formulae taking into account the economic and social 
environment showing that: 
- a “good” extension of the classical Cox-Rubinstein model is possible, 
-the model also extends the Black and Scholes model 
-numerical results are possible. 
Moreover, as the JM formulas are linear combinations of the classical BS results, 
the Greek parameters can also be computed and will be linear combinations of 
the Greek parameters given in section 6 and similarly for hedging coefficients. 
We also add that, in our point of view, one of the main potential applications of 
our new model concerns the possibility to get a new way of acting with the Black 
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and Scholes formula with information related to the economic, financial and even 
political environment provided it can be modelled by an ergodic homogeneous 
Markov chain.  
This model also gives the possibility of taking into account anticipations made 
by the investors in such a way as to incorporate them in their own option pricing 
and can also be used for models with financial crashes as well as to construct 
scenarios and particularly in the case of stress in a VaR type approach. 
 
11 THE EXTENSION OF THE BLACK-SCHOLES 
PRICING FORMULA WITH A MARKOV 
ENVIRONMENT: THE SEMI-MARKOVIAN JANSSEN-
MANCA-VOLPE FORMULA  
 
11.1 Introduction 
 
In this section, we present another semi-Markov extension of the Black and 
Scholes formula to the so-called Janssen-Manca-Volpe model to eliminate one of 
the restrictions of the Black and Scholes model that is the assumption of constant 
volatility upon time. 
If there have been a lot of attempts to slacken this condition, as for example in 
the model of Hull and White (1985) where  the concept of stochastic volatility is 
introduced, nevertheless, to our knowledge, in practice, no generalised model 
really supplants the classical Black and Scholes model. 
Whilst comparing with the Markovian Janssen-Manca model of the preceding 
section, we develop another type of model. More precisely we present new semi-
Markov models for the evolution of the volatility of the underlying asset. 
In fact, the SM model presented here supposes a type of SM evolution for the 
volatility of an initial Black-Scholes model presented for the first time in an oral 
communication in the ETH Zurich (1995) by J. Janssen and in a different 
approach by E. Çinlar in an oral communication at the First Euro-Japanese 
meeting on Insurance, Finance and Reliability, held in Brussels in 1998, and 
leading to a generalization of the classical Black and Scholes formula for the 
pricing of European calls with easy numerical applications. 
 
11.2 The Janssen-Manca-Çinlar Model 
 
Hereby, we present our initial model of 1995 close to the oral presentation of 
Çinlar but he gives the formula for the pricing of a call option using the Markov 
renewal theory. 
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11.2.1 The JMC (Janssen-Manca-Çinlar) Semi-Markov Model (1995, 1998) 
 
Let us consider a two-dimensional positive (J-X) process of kernel Q with as 
state space: 
 { }1,..., .I m=  (11.1) 
This means that on the probability space ( )Ω, ,ℑ P , we define the three-
dimensional process 
 ( )( ), ( , ) , 0n n nJ X nσ ≥  (11.2) 
with: 
 ,( , ) ,n n nJ I X σ + +∈ ∈ ×  (11.3) 
such that: 

 
( )( )

1

, , , ( , ) , 0.1..... 1

( , ), . .
n

n n n k k k

J j

P X x J j J X k n

Q x p s

σ σ σ

σ
−

≤ ≤ = = −

=
 (11.4) 

We know that the , ,ijQ i j I∈  can be written in the following form: 
 ( , ) ( , )ij ij ijQ x p F xσ σ=  (11.5) 
where: 
 ( )1, 1,ij n k np P J j J k n J i−= = ≤ − = , (11.6) 

 ( )1( , ) , ( ,( , )), 1, .ij n n k k k nF x P X x J X k n J iσ σ σ σ −= ≤ ≤ ≤ − =  (11.7) 
We also introduce the following r.v.: 

 { }
1

( )

, 0,
( ) sup : , 0,
( ) , 0.

n n

n

N t

T X X n
N t n T t t
Z t J t

= + + ≥

= ≤ ≥

= ≥

 (11.8) 

As usual, the transition probability for the process ( )( ), 0Z Z t T= ≥  is designed 
by: 
 ( )( ) ( ) ( )ij t P Z t j Z t iφ = = =  (11.9) 

and the stochastic processes ( ( ), ),( ( ), )N t t Z t t+ +∈ ∈ are respectively the 
Markov renewal counting and the semi-Markov processes. 
To give the financial interpretation of our model, let us define on the probability 
space ( ), , PΩ ℑ , the following filtration ( , )t t +ℑ = ℑ ∈ , 
 (( ,( , )), ( )).t n n nJ X n N tσ σℑ = ≤  (11.10) 
Given ℑt , let us consider the random time interval ( ) ( ) 1,N t N tT T +⎡ ⎤⎣ ⎦  on which we 

define the new stochastic process ( ( ), )S t t +∈ , representing the value of the 
considered financial asset, as the solution of the stochastic differential equation: 
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 ( ) ( ) 1 ( ) ( ) 1 ( ) ( ) 1 ( ) ( ) ( ) 1

( ) ( )

' ( ' ), ' , , 
( ')
(  )  ( -),

N t N t N t N t J JN t N tJ J J J N t N t N t

N t N t

dS dt dW t T t T T
S t
S T S T

μ σ
+ + +

+⎡ ⎤= + − ∈ ⎣ ⎦

=
(11.11) 

where the process 
( ) ( ) 1

( ( '), ' 0)
J JN t N t

W t t
+

≥ is a standard Brownian motion on 

( ) ( ) 1,N t N tT T +⎡ ⎤⎣ ⎦  defined  on the basic probability space stochastically independent 

of ( )( ) ( ),N t N tJ X . 

This model has the following financial meaning: at t=0, the asset starts from the 
known initial value 0S , the known initial j-state 0J  representing the state of the 
initial economic and financial environment. On the time interval 1X , the asset 
has the random volatility 1σ  and has as stochastic dynamics the SDE (11.11) 
with t=0; at time 1X , the J process has a transition to state 1J  and on the time 
interval [ )1 2,T T , the asset has the random volatility 2σ  and has as stochastic 
dynamics the SDE (11.11) with N(t)=1 and so on.... 
 We always define 0 0, . .X a s=  
So, it is now clear that we have in fact a perturbed Black and Scholes model due 
to this random change of volatility; note that this model is quite general as, in 
fact, we have a random volatility on each time interval ( ) ( ) 1,N t N tT T +⎡ ⎤⎣ ⎦ . 

Of course for m=1, we recover the classical Black-Scholes-Samuelson model for 
the description of an asset. 
 
11.2.2 The explicit expression of S(t) 
 
Given ( ) ( ) 1,N t N tJ J + , the Itô calculus gives the solution of the SDE (11.11) : 

 

2
( ) ( ) 1

( ) ( ) 1
( )( ) ( ) 1

'
2 ( ' )

( )

( ) ( ) 1

 ( ') ,

' , .

J JN t N t
J JN t N t

J J N tN t N t

t
W t T

N t

N t N t

S t S e e

t T T

σ
μ

σ

+
+

+

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟ −⎝ ⎠

+

=

⎡ ⎤∈ ⎣ ⎦

 (11.12) 

Starting from the state 0S  at time 0 and given a scenario for the economic and 
financial environment 0 1( , ,..., , ...)nJ J J , this expression gives the explicit form of 
the trajectories of the process ( ( ), 0).S t t ≥  
Now, given ( 0 0 1 1 ( ) ( ) ( ) 1 ( ) 1, , , , ..., , , ,N t N t N t N tJ X J X J X J X+ + ), from relation (11.12), 
we get: 
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( )( ) ( ) 1

( ) ( ) 1 ( ) ( ) 1

2

( )
( )

( ) ( ) 1

( ') ln = ) ' ' ,
2

' , ,

J JN t N t

N t N t N t N tJ J J J N t
N t

N t N t

S t t W t T
S

t T T

σ
μ σ+

+ +

+

⎛ ⎞
⎜ ⎟− + −
⎜ ⎟
⎝ ⎠

⎡ ⎤∈ ⎣ ⎦

 (11.13) 

so that for ( ) ( ) 1' ,N t N tt T T +⎡ ⎤∈ ⎣ ⎦ : 

 
( ) ( ) 1

( ) ( ) 1

( ) ( ) 1

2

( )
( )

2
( )

( ') ln ( ' ),  
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J JN t N t

N t N t
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J J N t
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J J N t
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t T

σ
μ
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+
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⎛ ⎞
⎜ ⎟− −
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−

≺
 (11.14) 

 , ( )( ) ( ) 1 ( ' )
( ) 1

( )

( ) , ,J J N tN t N t t T
t N t

N t

S tE J e
S

μ
+

−

+

⎛ ⎞
ℑ =⎜ ⎟⎜ ⎟

⎝ ⎠
 (11.15) 

 ( )2
, ( ) ( )( ) ( ) 1 ( ) ( ) 12 ( ' )  ( ' )

( ) 1
( )

( )var , 1J J N t J J N tN t N t N t N tt T t T
t N t

N t

S t J e e
S

μ σ
+ +

− −

+

⎛ ⎞
ℑ = −⎜ ⎟⎜ ⎟

⎝ ⎠
. (11.16) 

Let us suppose that the random variables 0 0 1 1 ( ) ( ) 1 ( ) 1, , , , ..., , ,N t N t N tS J X J J X J+ +  are 

given; it follows that the conditional distribution function of 
0

( )S t
S

 is a log-normal 

distribution, i.e.: 

( )0 1 ( ) ( ) 1 ( ) ( ) 10 1

0

2 2
1 ( ) 1 ( )

( )ln

( ), ( ) .
N t N t J J N t N tJ J J J N t J J N t

S t
S

N X t T X t Tμ μ σ σ
+ +

+ + − + + −

≺
 (11.17) 

 
11.3 Call Option Pricing 
 
Now to get a useful model, let us proceed as in Janssen and Manca (1999); for a 
fixed t, we assume that all the parameters ,μ σ  only depend on 0 ( ) ( ) 1, ,N t N tJ J J +  
and t is represented by  
 

0 ( ) ( ) 1 0 ( ) ( ) 1
,

N t N t N t N tJ J J J J Jμ σ
+ +

 (11.18) 

so that from relation (11.17): 

 
0 ( ) ( ) 1 0 ( ) ( ) 1 0 ( ) ( ) 1

2 2

0

( ) 1ln , .
2N t N t N t N t N t N tJ J J J J J J J J

S t N t t
S

μ σ σ
+ + +

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

≺  (11.19) 

Of course, we can always simplify our basic assumption by suppressing the 
dependence with respect to ( ) 1N tJ + and even to ( )N tJ . 
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Nevertheless, we think that the dependence from the future environment state 
( ) 1N tJ +  is quite important as it gives the possibility for the first time to model the 

stochastic asset evolution taking into account this anticipation of the next future 
state. 
Let us now consider a European call option with t as maturity time, K as exercise 
price that we must price at time 0. 
If we want to assume that there is no arbitrage possibility, we must impose that  
 

0 ( ) ( ) 1 0 ( ) ( ) 1N t N t N t N tJ J J J J Jμ δ
+ +

=  (11.20) 

where 
0 ( ) ( ) 1N t N tJ J Jδ

+
 represents the equivalent instantaneous non-risky return on 

[0,t] given 0 ( ) ( ) 1, ,N t N tJ J J + . Doing so, we will use the risk neutral measure under 
which the forward value of the asset is a martingale; otherwise we work with the 
initial “physical” measure more appropriate for insurance than for finance. 
Knowing 0 ( ) ( ) 1, ,N t N tJ J J +  and working with the risk neutral measure, we can 
compute the value of the call at time 0 using the classical Black and Scholes 
formula: 
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eδ
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=

 (11.21) 

To get the formula of the call only knowing 0 0,S J , we must use the following 
formula: 
 ( )0 0 ( ) ( ) 1 0 0 0( ) ( , ) , .

N t N tJ J J JC t E C S t J S
+

=  (11.22) 

From the theory of semi-Markov processes, we get: 

 
( )0 0 ( ) ( ) 1

0 0 0

0 0 0

0

( ) ( , ) , ,

( ) ( ) ( , ).
N t N tJ J J J

J J j jk J jk
j I k I

C t E C S t J S

C t P t p C S t
+

∈ ∈

=

= ∑∑
 (11.23) 

If we have no information about the initial state 0J , we get of course the 
following formula: 

 
( ) ( )( )0 0 ( ) ( ) 1 0 0 0( ) ( ) ( , ) , ,

( ) ( ).
N t N tJ J J J

i i
i I

C t E C t E E C S t J S

C t a C t
+

∈

= =

= ∑
 (11.24) 

 
Remark 11.1 Numerical treatments are possible  
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11.4 Stationary Option Pricing Formula 
 
In option pricing, it is nonsense to let t tend towards +∞ ; nevertheless, we can 
use the limit reasoning proposed by Janssen by supposing that on the time 
horizon [0,t], the semi-Markov environment has more and more transitions in this 
finite time period. 
We can model this situation under the assumption that the conditional sojourn 
time means , ,ijb i j I∈  satisfy the conditions 

 
( )

,

1

 0,

,
ij ij

ij n n n

b

b E X J i J j

ες ε

−

= >

= = =
 (11.25) 

so that: 

 
, ,

.

i ij ij ij ij i
j I j I

i ij ij
j I

p b p i I

p

η ε ς εθ

θ ς
∈ ∈

∈

= = = ∈

=

∑ ∑

∑
 (11.26) 

From the asymptotic theory of semi-Markov processes, we know that: 

 ( )( ) ( ) 10

1

lim , , , ,i jk jk
N t N t m

l l
l

p
P J j J k i j I

ε

π ς

π θ
+→

=

= = = ∈

∑
 (11.27) 

where the vector ( )1 ,..., mπ π is the unique stationary distribution of the embedded 
Markov chain of matrix P supposed to be ergodic. 
The new parameters ,  , ,jk i j k Iς ∈ represent factors expressing the 
proportionality of the sojourn in each environment state. 
Now the result (11.23) becomes: 

 
0 0 0

1

( ) ( , ).j jk jk
J J jkm

j I
l l

l

p
C t C S t

k I
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π θ∈

=

=
∈
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∑

 (11.28) 

From (11.24), we get 

 0

1

( ) ( , ).j jk jk
i ijkm

i I j I
l l

l

p
C t a C S t

k I

π ς

π θ∈ ∈

=

=
∈

∑ ∑ ∑
∑

 (11.29) 

This last formula replaces the Black and Scholes formula without any a priori 
information at time 0 except of course the initial value of the asset 0S . 
 In conclusion, the new model proposed here extends the classical Black and 
Scholes formula in the case of the existence of an economic and financial 
environment modelled with a homogeneous semi-Markov process taking into 



 
 
 
 
 
 
222                                                                                                             Chapter 5 

account this environment not only at the time of pricing but also before and after 
the maturity date. 
This new family of Black and Scholes formulae seems to be more adapted to the 
reality, particularly when taking into account the anticipations of the investor or 
the consideration of stress scenario in the philosophy of the VaR approach. 
 
12 MARKOV AND SEMI-MARKOV OPTION PRICING 
MODELS WITH ARBITRAGE POSSIBILITY  
 
The aim of this last part is the presentation of new models for option pricing, 
discrete in time and within the framework of Markov and semi-Markov processes 
as an alternative to the classical Cox-Rubinstein model and giving  arbitrage 
possibilities. They were introduced by Janssen, Manca and Di Biase (1998). Both 
cases of European and American options are considered and possible extensions 
are given. 
 
12.1 Introduction to the Janssen-Manca-Di Biase models 
 
Let us consider an asset observed on a discrete time scale  
 { }0,1,..., , ... ,t T T < ∞  (12.1) 
having S(t) as market value at time t. To model the basic stochastic process 
 (S(t), t=0,1,...,T), (12.2) 
we suppose that the asset has known minimal and maximal values so that the set 
of all possible values is the closed interval min max[ , ]S S partitioned in a subset of m 
subclasses. 
For example, if S0 is the value of the asset at time 0, we can put: 

 

max min
0

0

0

max min

,
2

, 1,..., ,
, 1,..., ,

,
2

k

k

S SS

S S k k
S S k k

S S

υ
υ

υ

−

−
=

= + Δ =

= − Δ =
−

Δ =

 (12.3) 

υ  being arbitrarily chosen. 
This implies that the total number of states is 2 1υ + .In the sequel, we will order 
these states in the natural increasing order and use the following notation for the 
state space: 
 { , ( 1),...,0,1,..., }.I υ υ υ= − − −  (12.4) 
We can also introduce different step lengths following up or down movements 
and so consider respectively , '.Δ Δ  
It is also possible to let  
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 maxS → +∞  (12.5) 
and 
 T → +∞  (12.6) 
particularly to  get good approximation results. 
Let us suppose we want to study a call option of maturity T and exercise price 
K= 0k Δ  both in European and American cases bought at time 0. 
So, in the European case, the intrinsic value of the option is given by: 
 ( ) max{0, ( ) }.C T S T K= −  (12.7) 
For the American case, the optimal time for exercising is given by the random 
time τ  such that: 

 1,...,
max max{0, } max{0, ).tt T

S K S Kτ=
− = −  (12.8) 

To get results, we must now introduce in the following section a stochastic model 
for the S-process. 
 
12.2 The Homogeneous Markov JMD (Janssen-Manca-Di 
Biase) Model For The Underlying Asset 
 
Let us suppose that we are working on the filtered probability space 
( , , ( ) )t PΩ ℑ ℑ . 
In our first model, we will suppose that the underlying asset S is a homogeneous 
Markov chain with matrix: 

 ijp⎡ ⎤= ⎣ ⎦P  (12.9) 

on the state space I given by relation (12.4). 
It follows that, at time t, given the knowledge of the asset value ( ) tS t S=  the 
market value of the option at time t, C(t), thus with a remaining maturity T-t and 
exercise price K given by 0 ,K k= Δ  has as probability distribution: 

 0

( )
0 , 0

( )
,

( ( ) ( ) ) , ,

( ( ) 0) .

T t
S j

T t
S j

l k

P C T j k p j k

P C T p

−

−

≤

= − Δ = >

= = ∑  (12.10) 

This result gives the possibility to compute all interesting parameters concerning 
C. For example, the mean of C(t) has the value: 

 
0

( )
, 0( ( ) ( ) ) ( ) .T t
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Of course, we have to compute the present value at time t with the non-risky unit 
period interest rate r so that the value of the call at time t is given by: 
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 (12.12) 

If the matrix P is ergodic, then if T t−  is large enough, results (12.10) and 
(12.11) can be well approximated by: 
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 (12.13) 

Of course the vector 

 0( , ..., , ..., )ν νπ π π π−=  (12.14) 
is the steady-state vector related to the matrix P. 
 
12.3 Particular Cases 
 
As we said in our introduction, our homogeneous Markov model contains as a 
very special case the famous CRR binomial model but with fixed minimal and 
maximal values. It suffices to select a Markov matrix P with the structure 
 

 

* * 0 0 0 0 0 0
* 0 * 0 0 0 0 0
0 * 0 * 0 0 0 0
0 0 * 0 0 0 0 0

0 0 0 0 0 * 0 0
0 0 0 0 * 0 * 0
0 0 0 0 0 * 0 *
0 0 0 0 0 0 * *

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (12.15) 

 
and as the Cox-Rubinstein model has a multiplicative form, we can consider that: 
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0 0
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Remark 12.1 Under (12.5), the matrix P has an infinite number of rows and 
columns. 
 
We can also get the trinomial model if we put in (12.15) a non-zero main 
diagonal and so on. 
 
12.4 Numerical Example For The JMD Markov Model 
 
To illustrate numerically our first model, let us suppose that we are interested in 
an asset whose possible values are restricted to the following ones; 
 
maximum value: state 3=1650, 
intermediary values: state 2=1600, state 1=1550, state 0=1500, 
state − 1=1450, state − 2=1400, 
minimum value: state − 3=1350. 
 
With the used notation, this means that 0 1500, 50.S = Δ =  Moreover, we also 
suppose that the transition matrix P, with as unit step the week, is given by 
 

 

1 1 1 1 0 0 0
6 3 3 6
1 1 1 1 1 0 0
3 6 6 6 6
1 2 1 1 1 1 0
7 7 7 7 7 7

1 1 10 0 0 0
2 4 4
2 3 1 10 0 0
7 7 7 7
1 2 2 1 10 0
7 7 7 7 7

1 1 1 10 0 0
2 4 8 8

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (12.17) 

It is easily seen that the matrix P is ergodic with as unique stationary distribution: 
(0.10002, 0.13336, 0.27228, 0.23737, 0.16927, 0.07539, 0.01231). 
Then starting at time 0 in state 1500 with a maturity time of 16 weeks, the 
asymptotic value of the European call option expectation with 1500 as exercise 
price is 41.95 and the call value at time 0 is 41.328.  
Table 12.1 gives option expectations and option values with different exercise 
prices: 
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Exercise price Option expectation Option value

1350 174.106 171.512 
1400 124.721 122.826 
1450 79.1059 77.927 
1500 41.9538 41.328 
1550 16.6704 16.422 
1600 5.00113 4.927 
1650 0 0 

Table 12.1: Markov option computation 
 
Let us now consider the transient behaviour, meaning that we will consider the 
maturity as a parameter expressed in n weeks. Table 12.2.1, gives option 
expectations, Table 12.2.2 option values with as exercise price 1500 and for 
different maturity times from 1 to 16 weeks.  
 
 
 
 

 STATE 
n -3 -2 -1 0 1 2 3 
1 75.00 75.00 57.14 25.00 14.29 7.14 0.00 
2 60.71 53.57 46.93 38.39 30.10 20.41 16.96 
3 50.02 48.40 43.39 40.60 37.08 31.61 31.39 
4 45.70 44.92 42.79 41.11 39.61 37.39 37.44 
5 43.70 43.30 42.35 41.57 40.84 39.87 39.81 
6 42.76 42.58 42.13 41.78 41.45 40.98 40.96 
7 42.33 42.24 42.04 41.87 41.72 41.50 41.50 
8 42.13 42.09 41.99 41.92 41.84 41.75 41.74 
9 42.03 42.02 41.97 41.94 41.90 41.86 41.86 
10 41.99 41.98 41.96 41.95 41.93 41.91 41.91 
11 41.97 41.97 41.96 41.95 41.94 41.93 41.93 
12 41.96 41.96 41.96 41.95 41.95 41.94 41.94 
13 41.96 41.96 41.95 41.95 41.95 41.95 41.95 
14 41.96 41.96 41.95 41.95 41.95 41.95 41.95 
15 41.95 41.95 41.95 41.95 41.95 41.95 41.95 
16 41.95 41.95 41.95 41.95 41.95 41.95 41.95 

Table 12.2.1: option expectation 
 

 STATE 
n -3 -2 -1 0 1 2 3 
1 70.93 74.93 57.09 24.98 14.27 7.14 0.00 
2 60.60 53.47 46.85 38.32 30.05 20.37 16.93 
3 49.88 48.27 43.26 40.48 36.98 31.53 31.31 
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4 45.53 44.75 42.63 40.26 39.45 37.25 37.30 
5 43.50 43.10 42.15 41.38 40.65 39.68 39.63 
6 42.22 42.34 41.90 41.54 41.21 40.75 40.73 
7 42.05 41.97 41.76 41.60 41.45 41.23 41.22 
8 41.81 41.77 41.68 41.60 41.53 41.43 41.43 
9 41.68 41.66 41.62 41.58 41.55 41.51 41.50 
10 41.60 41.59 41.57 41.55 41.54 41.52 41.52 
11 41.54 41.54 41.53 41.52 41.51 41.50 41.50 
12 41.49 41.49 41.49 41.48 41.48 41.47 41.47 
13 41.45 41.45 41.45 41.44 41.44 41.44 41.44 
14 41.41 41.41 41.41 41.41 41.41 41.41 41.40 
15 41.37 41.37 41.37 41.37 41.37 41.37 41.37 
16 41.33 41.33 41.33 41.33 41.33 41.33 41.33 

Table 12.2.2: option value 
 
12.5 The Continuous Time Homogeneous Semi-Markov 
JMD Model For The Underlying Asset 
 
With the generalisation of electronic trading systems, it seems more adapted to 
construct a time continuous model for which the changes in the values of the 
underlying process may depend on the time it remained unchanged before a 
transition. 
Also, let  
 (( , ) 0,1,...)n nS T n =  (12.18) 
be the successive states and time changes of the considered asset. 
The Janssen-Manca semi-Markov continuous model without AOA starts from the 
basic assumption that the process (12.18) is a semi-Markov process of kernel Q. 
It follows that, at time t in state S(t)=St, the market value of the considered 
European option with maturity T t−  has as probability distribution at maturity 
time  

 
0
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0
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t

S j

S j
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P C T j k T t j k

P C T T t j k
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φ
≤

= − = − >

= = − ≤∑  (12.19) 

Of course, the matrix ( )tΦ  represents the transition probabilities for the 
considered semi-Markov process (see Chapter 3, relation (10.2)) 
This result gives the possibility to compute all interesting parameters concerning 
C. For example, the mean of C(T) has the value: 
 

0

0( ( ) ( ) ) ( )( ) .
tt S j

j k
E C T S t S T t j kφ

>

= = = − − Δ∑  (12.20) 

The pricing of the option at time t is here given by the conditional market value 
C(t): 
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which is the Janssen-Manca-Di Biase formula for the considered semi-Markov 
model. 
If the semi-Markov process is ergodic, then, if (T − t) is large enough, results 
(12.19) can be well approximated by: 
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( ( ) 0) , .
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l
l K
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π
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= − = >
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The stationary version of the Janssen-Manca-Di Biase formula is thus given by 
 

0

0( , ) ( ) .
t

T t
t j S j

j k
C S t v j kπ φ−

>

= − Δ∑  (12.23) 

Of course the vector 1( ,..., )mπ π  is the asymptotic distribution of the embedded 
semi-Markov process. 
The evaluation of assets, formally is continuous, but substantially is given in the 
discrete case; furthermore, facing the numerical solution of a continuous time 
semi-Markov process gives problems of numerical and stochastic convergence. 
For these reasons, we can face our problem with the discrete time homogeneous 
semi-Markov process as introduced in Chapter 4. 
 
12.6 Numerical Example For The Semi-Markov JMD 
Model 
 
We will only give a numerical example for the semi-Markov model in the 
asymptotic case, i.e., values of the option expectation and of the options for large 
maturities. 
As data, we just need as supplementary information, the conditional mean 
sojourn times being computed by relations (1.15) of Chapter 4.The used values 
are given by the following matrix Σ : 
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1 1 1 2 1 1 1
2 2

1 11 1 2 1 1
4 4

12 1 1 2 2 1
2
1 11 1 1 1 1
2 2

1 11 1 1 2 1
2 2

1 11 1 2 1 2
2 2
1 1 11 1 1 1
2 3 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Σ . (12.24) 

 
In this case, the asymptotic distribution for the semi-Markov process is: 
(0.09487, 0.12650, 0.38238, 0.15352, 0.15013, 0.08358, 0.00902).  
Then starting at time 0 in state 1500, the asymptotic value of the call option 
expectation with 1500 as exercise price is 46 and the call value is 45.315.  
The following table gives option expectations and option values with different 
exercise prices: 
 

Exercise price Option expectation Option value
1350 178.78 176.119 
1400 129.234 127.308 
1450 83.8638 82.614 
1500 46.0002 45.315 
1550 15.8126 15.577 
1600 4.74378 4.673 
1650 0 0 

Table 12.3: semi-Markov option computation 
 
12.7 Conclusion 
 
The JMD models presented here give a semi-Markov approach for the pricing of 
option financial products working in discrete time and with a finite number of 
possible values for the imbedded asset, which is always the case from the 
numerical point of view.  
The main interest of these models is that they work even when there are 
possibilities of arbitrage, that is to say for the most frequent cases. Of course, one 
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of the main difficulties for applying this model is the fitting of the needed data 
and this is only of interest in case of asymmetric information so that the 
economic agent can believe in his own information, knowing that he will always 
be in a risky situation expecting gain but still worried about the possibility to lose 
as in the case of a real-life situation! 
It is also important to point out that the numerical examples are coherent; 
nevertheless, they are significant differences according to the model used: 
Markov or semi-Markov, so that it is very important to select the most concrete 
one.  
Another possibility is to use the more classical and less risky way of building 
likely scenarios for these data and to study their possible consequences. 
 



 

 

Chapter 6 
 
OTHER SEMI-MARKOV MODELS IN FINANCE 
AND INSURANCE  
 
1 EXCHANGE OF DATED SUMS IN A STOCHASTIC 
HOMOGENEOUS ENVIRONMENT 
 
1.1 Introduction 
 
According to several authors, the theory of financial operations evaluation can be 
introduced from an axiomatic point of view (for a more complete treatment see 
Volpe di Prignano (1985)) and any financial problem can be dealt with from the 
axiomatic approach. The challenge is to find the mathematical relations that must 
be solved in order to find quantitative answers to financial questions. 
Of course, the choice of the interest evolution law is crucial. 
For example if we call: 
 1 2( , )t tν  (1.1) 
an exchange factor, where: 

 
1 2

1 2 1 2

1 2

1 ,
( , ) 1 ,

1 ,

if t t
t t if t t

if t t
ν

> <⎧
⎪ = =⎨
⎪< >⎩

 (1.2) 

it is not always true that: 
 1 2 2 3 1 3( , ) ( , ) ( , )t t t t t tν ν ν=  (1.3) 
and then it is not possible to use the compound interest law to describe the 
phenomenon which is the object of our study; we have to select another interest 
law.  
Furthermore the problem of the construction of exchange factors is more useful 
in a stochastic environment, in the sense that the exchange factors can be 
considered as random variables and, to follow time evolution, we need a 
stochastic process approach. 
In this chapter our aim is to show how, by means of SMP, it is possible to 
introduce a stochastic environment in the axiomatic approach to describe a lot of 
financial operations. 
Furthermore we would like to show that the semi-Markov approach could be an 
alternative to the approach under the hypothesis of the absence of opportunity of 
arbitrage (AOA, see Chapter 5) which implies the use of the risk free measure for 
a asset evaluation.  
The semi-Markov approach enables us to get financial evaluations by means of 
the physical measure. This fact is really important in the sphere of actuarial 
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science because, if it is possible to know or to make good estimates of claims by 
means of statistics, an insurance company can evaluate its premiums and limit its 
risk of ruin. 
As we have already shown in section 12 of Chapter 5, in finance, these models 
can be seen as an alternative approach to the methods presented by Black and 
Scholes (1973) for option evaluation and for Vasicek (1977) for bond evaluation 
in continuous time evolution of a general financial problem. 
In insurance there are other approaches that are really useful, see Bühlmann 
(1992), (1994), Norberg (1995), but these approaches do not really consider 
financial choice problems that will be developed in this chapter.  
 
1.2 Deterministic Axiomatic Approach To Financial Choices 
 
Fundamentally, mathematics of finance is based on the study of investor 
preferences between dated sums, given by a pair of real numbers i.e: 
 ( , ), , ,S t S t ∈  (1.4) 
S representing a sum and t a time. 
 
Definition 1.1 The investor prefers the pair 2 2( , )S t  to the pair 1 1( , )S t  means 
that he prefers to get the sum 2S  at time 2t  instead of the sum 1S  at time 1t . 
In this case, the preference relation defined on the set of dated sums is 
represented by the following notation: 
 1 1 2 2( , ) ( , ).S t S t≺  (1.5) 
 
Definition 1.2 If 
 1 1 2 2( , ) ( , )S t S t≺ and 2 2 1 1( , ) ( , ),S t S t≺  (1.6) 
then the preference is called strict and is thus represented as: 
 1 1 2 2( , ) ( , ).S t S t≺  (1.7) 
 
Definition 1.3 If 
 1 1 2 2( , ) ( , )S t S t≺ and 2 2 1 1( , ) ( , ),S t S t≺  (1.8) 
the two dated sums are called indifferent and we write: 
 1 1 2 2( , ) ( , ).S t S t≈  (1.9) 
 
As given in Duffie (1988) the ideal should be that this indifference relation is an 
equivalence relation (reflexive, symmetric and transitive). 
Furthermore, for economic and financial reasons, it is natural to assume that: 

 1 2
1 2

1 2

if 0,
( , ) ( , )

if 0,
t t S

S t S t
t t S

> >⎧
⎨ < <⎩

≺  (1.10) 

 1 2( , ) ( , )S t S t≺ iff 1 2.S S<  (1.11) 



 
 
 
 
 
 
Finance and Insurance models                                                                            233 

 

For the very particular case of a flat interest rate curve with a yearly interest rate 
r, Volpe di Prignano (1985), the strict preference relation defined by:  

 
1 2

1 2
1 1 2 2( , ) ( , ) iff 

(1 ) (1 )t t

S SS t S t
r r

<
+ +

≺  (1.12) 

evaluated at time 0 is at the basis of all classical finance as it represents 
comparisons of present values computed at time 0. 
For any yield curve in which tr  represents the interest rate for an investment 
made at time 0 and of maturity t, the preceding relation becomes: 

 
1 2

1 2

1 2
1 1 2 2( , ) ( , ) iff .

(1 ) (1 )t t
t t

S SS t S t
r r

<
+ +

≺  (1.13) 

Let us remark that if the considered yield curve presents some local inversion 
phenomena so that the curve is no longer globally increasing, then relation (1.7) 
is no longer a total order relation and moreover properties (1.12) and (1.13) are 
not always verified.  
In the case in which a total relation order is defined and relations (1.10) and 
(1.11) are satisfied, given an investor and a certain instant, we can define a so-
called indifference relation ℜ  on dated sums as follows: 
 1 1 2 2 1 1 2 2( , ) ( , ) ( , ) ( , )S t S t S t S tℜ ⇔ ≈ . (1.14)  
It is clear that this indifference relation can change with time depending on the 
evolution of the money utility function of the investor and the economic, political 
and financial environment under consideration and in the same way, under the 
same assumptions, two different investors usually have different indifference 
relations. 
The presented static approach to the theory of the preference between dated sums 
can and must be extended from a dynamic point of view as follows: under our 
assumptions, given t t1 2,  and S1, there exists one and only one amount 2S  such 
that (1.14) holds and so we can define the following three-variable functions 
giving this value: 

 2 1 2 1( , , ).S t t Sϕ=  (1.15) 
It is clear that this is a continuous approach to the problem, all three variables 
being continuous. But for practical applications, it is possible to discretize the 
sums to obtain the set 
 { }1 2 1 2, ,..., ,n mI S S S S S S= < < <  (1.16) 
as all possible amount values.  
All remains unchanged but now relation (1.15) represents a three-variable 
function in which one of the variables and the function can only assume a finite 
number of values. 
Though relation (1.15) represents a non-homogeneous time environment, we 
begin with the time homogeneous case. 
In a deterministic static homogeneous case, the indifference relation (1.14) 
becomes: 
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 1 1 2 2 1 1 2 2( , ) ( , ) ( , ) ( , )S t S t S t h S t h h≈ ⇔ + ≈ + ∀ ∈ , (1.17) 
so that a time translation is indifferent for the choice; only the length of the 
financial operation, )( 12 tt − , assumes relevance. 
In the dynamic approach, equation (1.15) becomes:  
 2 1( , )S S tϕ= . (1.18) 
In this case we have a two-variable function: the time variable represents the 
length of the operation and 1S  the initial sum. 
 
1.3 The Homogeneous Stochastic Approach 
 
Though usually an investor who wants to invest a given amount at a given time 
and for a given period cannot predict the final result of his investment, it seems 
reasonable to assume that he can know an interval [ ]', "S S , 
 [ ', "]S S S∈ , (1.19) 
within which his final return S must be situated and thus with a minimal value 

'S ,eventually 0, and a maximum one "S . 
In this way, the final result S of his financial operation clearly can be seen as a 
random variable. 
In the static approach, the maximal information of the investor will be the 
distribution function of this r.v. 
If p represents the density of the r.v., then he can compute the mean and variance 
of his investment: 

 
"

'

( ) ,
S

S

S S p S dS= ⋅∫  (1.20) 

 
" _

2 2

'

( ) ( ) ( )
S

S

S S S p S dSσ = −∫  (1.21) 

and with this information (expected value and risk measure) at the basis of the 
Markovitz theory, the investor can decide to make the investment or not. 
If the function p represents all the information to solve the static approach, it is 
much more complicated for the stochastic dynamic approach. 
The stochastic model needs the introduction of a probability space ( ), , PΩ ℑ  
where P is the probability measure describing the stochastic dynamics of the 
process 
 1( ( ), ,..., )nS S t t t t= = . (1.22) 
In particular for each time t, it is also possible to get the mean and the variance of 

( )S t  but of course, we can do more with the construction of a realistic stochastic 
model. 
The next dynamic stochastic model will be characterized by the following 
transition probability function: 
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( )

[ ]
1 2 2 1

1 2

( , , ) ( ) (0) ,
, [ ', "], 0, .

p S S t P S t S S S
S S S S t T

= = =

∈ ∈
 (1.23) 

The assumption of homogeneity implies that: 

 
( )

[ ]
2 1 1 2( ) ( ) ( , , ),

, ', " .
P S s t S S s S p S S t
s s t S S

+ Δ = = = Δ

+ Δ ∈
 (1.24) 

It is clear that the knowledge of the function p(.,.,.) defined by (1.23) gives the 
possibility to compute the expected values and  risks of financial operations.  
In fact this model can be improved with the introduction of a two-dimensional 
process with time as a second component. 
 
1.4 Continuous Time Models With Finite State Space 
 
When we deal with the dynamic stochastic approach to a general financial 
problem we are defining a stochastic process describing the evolution of the 
investment during some period of time.  
This evolution can be studied by means of an HSMP of kernel Q; in fact as 
already explained, one follows the evolution of the system states with a 
stochastic time length. 
We denote the state space I by: 

 
{ }1 2

1 min 2 max

, , , ,
.

m

m

I S S S
S S S S S

=

= < < < =

…
 (1.25) 

We will try to give a financial meaning to all the variables that are involved in an 
SMP. 
If nJ  represents the value of the sum at transition n, it is usual to assume that the 
stochastic process 
 ( , 0)nJ n ≥  (1.26) 
is a homogeneous SMP where the transition matrix of the embedded MC is: 
 [ ]ijp=P . (1.27) 
Here, ijp  represents the probability of going from the state i to the state j, where 

in general the state k represents the sum value kS I∈ . 
We also introduce the r.v. nT  representing the time at transition n, i.e., the time of 
the nth sum transition,  where clearly: 
 0 10 nT T T≤ ≤ ≤ ≤ ≤ , (1.28) 

0T  representing the time of the initial investment. 
The basic assumption of the model considered here is that the (J-T) process is a 
continuous time homogeneous semi-Markov process of kernel Q. 
Here, the general element ( )ijQ t  of the semi-Markov matrix kernel Q represents 
the probability that after a time t from the n-th transition, the value of the 
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financial operation is ,jS  given that the value of the operation was iS  at time nT  
and that the ( 1)n + th transition happened in a time less than or equal to t. 

( )iH t  gives the probability that the financial operation value will change, given 
that the value at the moment of the nT  was iS  and that the value change will take 
place in a time less than or equal to t.   
Another interesting r.v. is the sojourn time in one of the states after a transition in 
this state. For example, if at time nT  the r.v. sum gets the value iS , the 
probability of this sum becoming jS  in a time length t will be represented, as we 
already know, by the increasing distribution function ( )ijF t . 
The associated homogeneous semi-Markov process Z represents the value at time 
t of the dated sum. 

( )ij tφ  represents the transition probabilities of the Z-process.  
The evolution equations of the Z-process are reported to give their financial 
meaning: 

 ( )
0

( ) 1 ( ) ( ) ( )
t

ij ij i ik kj
k E

t H t Q s t s dsφ δ φ
∈

= − + −∑∫ . (1.29) 

( )ij tφ  represents the probability that the sum iS at time 0 will be jS  after a time t.  
( )1 ( )ij iS tδ −  represents the probability that the value of the investment will 

remain iS  after a time t; this element has sense iff i=j. 

0

( ) ( )
t

ik kj
k E

Q s t s dsφ
∈

−∑∫  represents the probability that the value of the financial 

operation will be jS  after a time t, taking into account that at initial time the 
value was iS  and that the financial operation changed value at least once. 
Instead of working with continuous time, we can also consider discrete time; this 
generally implies a simplification for the numerical treatment as we have already 
explained before. 
 
1.5 Discrete Time Model With Finite State Space 
 
We will now look at an application of the model defined in the previous 
paragraph in real problems. 
As we noted previously, in the real world, we are not usually interested in the 
continuous state approach. For example, we can decide to use as a monetary unit 
the amount of $1000 and so automatically, the underlying state space is discrete; 
moreover if we are sure that the maximum amount will be no more than one 
billion dollars, we also have a finite state space. Bühlmann (1994) also gives 
some advantages of working with discrete state space. 
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Furthermore, from an applied point of view, discrete time is in general enough to 
get results; for example, depending on our kind of investment, we are interested 
to know the results after an hour or a day or, maybe a year, and not necessarily 
instant after instant.  
Of course, we know continuous time models can generally give more elegant 
mathematical developments as is shown in examples in Chapters 3 and 4, but we 
also know that the numerical results obtained in Chapter 4 needed discrete time 
and finite state space. 
Also, as before, relation (1.25) represents the finite state space and furthermore: 
 t ∈ , (1.30) 
and the semi-Markov model used here  still has (1.27) as embedded MC. 
We also need the conditional probabilities 
 1 1( ) [ , ], , ,ij n n n nb t P X j T T t X i i j I+ += = − = = ∈  (1.31) 
representing the probability that, after a time t from the nth transition, the value 
of the financial operation is ,jS  given that the value of the operation is iS  at 
time nT  and that the ( 1n + )th transition happens after nT  in a time just equal to t.  
Relations (1.19) of Chapter 4 give the evolution equation of the DTHSMP.  
 
1.6 An Example Of Asset Evaluation 
 
Now we seek to examine stochastic process problems that can explain the 
dynamic stochastic development of financial operations. 
We would like to apply our model to a general stochastic financial operation, the 
purchase of goods or shares by an investor who would like to sell them for a 
profit. 
First of all, we have to observe that we are in the hypothesis that the time is 
discrete if the quotations are fixed at the end of every stock exchange day, for 
example. 
We also suppose that the investor is interested in a medium term investment, in 
the sense that he doesn’t want to buy for a short period of speculation.  
For this reason, the time unit will represent a month and "t" will give the number 
of months from a starting date. Furthermore, as we said previously, we suppose 
that the state space is finite, i.e., 
 1 2{ , ,..., }mI S S S= . (1.32) 
From the general results of Chapter 3, the model is characterized by the semi-
Markov kernel Q equivalently by 
 , , , 1,...,ij ijp F i j m= , (1.33) 

( )ijF t representing the increasing distribution function of waiting time ijτ , in the 
sense that the asset value becomes jS  starting from iS . 
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The probabilities ( ), , 1,...,ij t i j mφ =  of the associated semi-Markov process tZ , 
giving here the probabilities that the asset value, once it gets the value iS  will 
have the value jS  after a time t, satisfy the system (1.29). 
 
1.7 Two Transient Case Examples 
 
Now we can study the dynamic evolution of the asset value we are examining as 
indeed, we know that 
if the asset value is, at time 0, iS , after t stock exchange days for example, the 
distribution of this asset on the possible values: 
 , 1, ,jS j m= … , (1.34) 
is given by 
 ( ), 1,..., , 1,2,...ij t j m tφ = =  (1.35) 
With this probability distribution of the asset value at time t we can very easily 
compute the expected value and variance of the asset at each time t. 
Furthermore it is also very simple to compute the so-called VaR (Value of Risk) 
values of our financial operation, representing the value of the random variable 
with a probability less than a fixed threshold. 
For example, the threshold can be fixed equal to 5%; then we know the r.v. value 
corresponding to this probability and so with a probability of 95% the loss value 
will be less than or equal to this value. 
In this part we present two examples.  
In the first example we apply our model to the evaluation of a real estate 
investment. The second will consider an application to the evaluation in time of 
the value evolution of a share. 
Example 1 A real estate investment example: we suppose that the price of the 
considered real estate can have the following values also representing the states 
of our model: 
 

state 1S  2S  3S  4S  5S  6S  
value 100000 120000 140000 160000 180000 200000 

Table 1.1: real estate possible values 
 
We suppose that we will follow the evolution of the system for 10 years with the 
year as time unit and let us assume that, based on the data, we solve the semi-
Markov evolution equations (1.29). 
Probabilities: 
  { }( ), , 1, ,6 , 0,1, ,10ij t i j tφ ∈ =… …  (1.36) 
are reported in Tables 1.2.1, 1.2.2 and 1.2.3 for years 1, 5, 10: 
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 1 2 3 4 5 6 
1 (1)jφ  0.9561 0.0216 0.0083 0.0098 0.001 0.0032 

2 (1)jφ  0.0212 0.9228 0.0273 0.0111 0.0153 0.0023 

3 (1)jφ  0.0055 0.0352 0.9055 0.0378 0.0074 0.0086 

4 (1)jφ  0.004 0.0086 0.0253 0.9308 0.0211 0.0102 

5 (1)jφ  0.0004 0.0017 0.0157 0.0054 0.9636 0.0132 

6 (1)jφ  0.0011 0.0006 0.0229 0.0224 0.0197 0.9333 

Table 1.2.1: probabilities to go from state i to state j at year 1 
 

 1 2 3 4 5 6 
1 (5)jφ  0.7091 0.1483 0.0659 0.0367 0.0236 0.0164 

2 (5)jφ  0.0526 0.6908 0.0976 0.0625 0.0507 0.0458 

3 (5)jφ  0.0598 0.1196 0.5997 0.1131 0.0615 0.0463 

4 (5)jφ  0.0542 0.0717 0.1211 0.6512 0.0574 0.0444 

5 (5)jφ  0.0134 0.0474 0.0696 0.1153 0.6312 0.123 

6 (5)jφ  0.0169 0.0167 0.115 0.065 0.1228 0.6636 
 Table 1.2.2: probabilities to go from state i to state j at year 5 

 
 1 2 3 4 5 6 

1 (10)jφ  0.2957 0.2294 0.2265 0.1099 0.0865 0.052 

2 (10)jφ  0.1626 0.2354 0.1875 0.1811 0.1313 0.1021 

3 (10)jφ  0.1291 0.2024 0.2311 0.196 0.1288 0.1126 

4 (10)jφ  0.1148 0.1584 0.1906 0.2939 0.1391 0.1032 

5 (10)jφ  0.045 0.1077 0.1279 0.2244 0.272 0.223 

6 (10)jφ  0.0624 0.0575 0.1681 0.1419 0.253 0.3171 
Table 1.2.3: probabilities to go from state i to state j at year 10 

 
Knowing the numerical values (1.36), it is possible to obtain the mean value 
M(i,t) of the real estate at time 1, ,10t = …  knowing the starting state at time 0 is 
I, 

 
1

( , ) ( ) .
m

ij j
j

M i t t Sφ
=

= ∑  (1.37) 

Table 1.3 gives these results. 
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 1 2 3 4 5 6 
M(i,0) 100000 120000 140000 160000 180000 200000 
M(i,1) 101754 121667 140641 159737 179393 197173 
M(i,2) 104042 122679 141087 158269 177451 195632 
M(i,3) 106820 125739 142371 156802 176681 191751 
M(i,4) 108798 127910 142137 155225 174741 187728 
M(i,5) 111334 130103 142714 154384 173452 185018 
M(i,6) 115481 132933 143699 153874 171843 183358 
M(i,7) 119359 135206 143944 152400 170439 179058 
M(i,8) 123772 137549 145079 151410 167756 174217 
M(i,9) 128202 140478 146244 150298 166249 171552 

M(i,10) 132367 143784 146612 149870 164792 168340 
Table 1.3: Real estate mean value  

 
In Table 1.4 the standard deviations related to each element of Table 1.3 are 
given as risk measures of the investment. 
 

 1 2 3 4 5 6 
0 0 0 0 0 0 0 
1 9633 10202 8968 7930 6378 11545 
2 13139 12309 13396 12228 11866 14865 
3 17049 17284 17574 15768 15157 19838 
4 19444 20711 18905 18571 18194 23373 
5 21990 23097 21128 20512 20501 24867 
6 24820 26294 23206 22328 22733 25674 
7 26417 27853 24650 24159 24699 27381 
8 28044 29402 27282 26284 26043 28636 
9 29234 30327 28977 28337 27212 29620 
10 29604 31462 30554 29346 28775 30378 

Table 1.4: Standard deviations of the real estate mean values  
 
In an investment it is important to know the present value at time 0 of the mean 
result at time t. In this way it is possible to compare the investment with other 
financial operations; furthermore it gives a measure of the suitability of the 
investment. These results are given in Table 1.5. 
 

 1 2 3 4 5 6 
Mpv(0) 100000 120000 140000 160000 180000 200000 
Mpv(1) 98791 118124 136545 155085 174168 191430 
Mpv(2) 98069 115637 132988 149184 167264 184402 
Mpv(3) 97755 115069 130290 143496 161688 175479 
Mpv(4) 96666 113647 126287 137916 155255 166794 
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Mpv(5) 96038 112228 123106 133173 149621 159598 
Mpv(6) 96713 111329 120346 128867 143916 153560 
Mpv(7) 97050 109935 117039 123915 138583 145591 
Mpv(8) 97707 108582 114527 119524 132428 137528 
Mpv(9) 98256 107664 112084 115191 127416 131480 

Mpv(10) 98493 106988 109093 111517 122621 125260 
Table 1.5: Real estate mean present value  

 
Furthermore, to have a clear idea of a real estate investment, the annuity rent 
given by the real estate should also be taken into account. 
 
Example 2 A share evolution example: the second example is devoted to the 
evolution of a share. 
We suppose that the share will have on our time horizon, the following possible 
values: 

state value state value state value
      

1 1000 8 1350 15 1700 
2 1050 9 1400 16 1750 
3 1100 10 1450 17 1800 
4 1150 11 1500 18 1850 
5 1200 12 1550 19 1900 
6 1250 13 1600 20 1950 
7 1300 14 1650 21 2000 
Table 1.6: states of share evolution.  

 
Here too, we only give results based on our data. 
In this case the tables of results are bigger than in the previous examples. 
In fact we will follow the evolution of the share value for two years with a time 
interval of one month. So we will only report the tables of the final results 
without presenting any intermediate result. 
The mean values of the share for each period are reported in Table 1.7 
As in Table 1.3, the rows correspond to the years and the columns to the starting 
state. 
As risk measures of the financial operation, the variances of the mean values of 
the previous table are reported in Table 1.8.  
Table1.9 gives the mean present values of the elements of Table 1.7 and finally 
Table 1.10 contains the VaR values at 95% of each of the elements of Table 1.7.  
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1.8 Financial Application of Asymptotic Results  
 
Assuming that the semi-Markov process is ergodic, from the results of Chapter 3, 
section 10, we know that: 

 

1

j j
j m

h h
h

π η

π η
=

Π =

∑
. (1.38) 

Let us recall that the probabilities , 1,...,j j mπ =  are the steady-state probabilities 
of the embedded Markov chain and jη , j=1,…,m are the mean sojourn times in 
each state j, j=1,…,m. 
We can give a double meaning to probabilities (1.38): on the one hand they 
represent the probabilities that the asset value is , 1,...,jS j m=  after a long time 
period. On the other hand they give the percentages of time in which the asset 
will have values , 1,...,jS j m= . 
In a more general model we could be also interested in the probability that, at a 
given future time, the asset will assume a given value. This can be useful to 
resolve arbitrage problems and to decide when to buy or to sell the asset we are 
studying. 
These entrance probabilities je in a given state , 1,...,jS j m=  at a given time t, in 
the case in which our process has the steady state vector, have an ergodic 
behaviour and it is easy to compute them, in fact: 

 

1

j j
j m

j
h h

h

e
π

η π η
=

Π
= =

∑
. (1.39) 

Now we can make some observations on the different meanings of (1.38) and 
(1.39). 
We can say how it is possible to follow the dynamic evolution of an asset value 
by means of a homogeneous semi-Markov process directed by a transition 
probability matrix and by a sojourn time distribution function of the same asset 
value. 
It must be made clear that we hypothetically assert that we don’t know anything 
about the day quotation, but we know the embedded Markov chain matrix and 
the sojourn time distribution functions of our process. 
In this case, we can suppose that the process works, without observation over a 
very long time period. Under these hypotheses we can formulate some questions: 
 
- What probability should we assign to an event that the asset is likely to have on 
a given stock exchange day? The jΠ , j=1,…,m provide an answer.. 
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- What probability should we assign to the event that the asset value becomes jS  
on a given stock exchange day? To this question je , j=1,…,m is the answer.  
- Supposing that the asset changes its value just that day; what probability should 
we give to the event that jS  becomes the asset value? In this case the answer is 

jπ (the element of the steady state vector). 
 
Coming back to the last example we compute the three limit vectors.  
The related results are reported in Table 1.11.  
 

state π  Π  e 
1 0.038376 0.038786 0.003092
2 0.042548 0.042801 0.003429
3 0.047037 0.047356 0.003790
4 0.046367 0.046009 0.003736
5 0.048877 0.049879 0.003938
6 0.049470 0.049398 0.003986
7 0.054667 0.055429 0.004405
8 0.052218 0.051728 0.004208
9 0.055007 0.055255 0.004432

10 0.057753 0.057092 0.004654
11 0.056307 0.055002 0.004537
12 0.051747 0.051572 0.004170
13 0.051982 0.052283 0.004189
14 0.052682 0.051810 0.004245
15 0.045190 0.046125 0.003641
16 0.044767 0.045734 0.003607
17 0.045797 0.046545 0.003690
18 0.045992 0.045377 0.003706
19 0.040193 0.039611 0.003239
20 0.034717 0.034361 0.002797
21 0.038306 0.037844 0.003087

Table 1.11: limit vectors. 
 
2 DISCRETE TIME MARKOV AND SEMI-MARKOV 
REWARD PROCESSES AND GENERALISED 
ANNUITIES 
 
In Janssen and Manca (2006) the continuous time Markov reward processes 
(CTMRWP) were described. In Janssen and Manca (2004c) it is described how 
the DTMRWP can be seen as the natural stochastic generalization of the concept 
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of discrete time annuity. In this section, after a short introduction of DTMRWP 
and their natural relation with annuities, we will show how it is possible to give a 
further generalisation to the annuity concept by means of SMRWP. 
 
2.1 Annuities And Markov Reward Processes 
 
The annuity concept is very simple and can be easier understood by means of 
Figure 2.1 for the immediate case, 

Figure 2.1: constant rate annuity-immediate. 

and by Figure 2.2 for the due case. 

Figure 2.2: constant rate annuity-due. 

Clearly the periodic payments can be variable. The simple problem to face is to 
compute the value at time 0 (present value) or at time n (capitalisation value) of 
the annuity. The present value formulas are presented at the beginning of Chapter 
4. There exist similar results for capitalisation values (see Kellison (1991). 
Instead of assuming as usual that S is deterministic, we will now consider S as 
r.v. with a set of possible values: 
 { }1 2, , , mS S S S= … . (2.1) 
Furthermore if we assume that the value at time k will depend only on the value 
at time k − 1, we can model it with a Markov process and, as a sum or amount of 
money is associated with each state, we can use the framework given by the 
Markov reward model. 
We will now give relations that describe the simplest case of discounted 
DTMRWP, trying to show in the immediate case the recursive nature of the 
process. Then the most two general relations in the immediate and due cases are 
given. 
 (1) 1 1(1 ) (1 )i i iV r rψ ψ− −= + = + , (2.2) 

 (1) (1)(2) 1 2 (1) 2

1 1
(1 )

m m

i i k i kik ik
k k

V r p V pψ ν ψ ν ψ−

= =

= + + = +∑ ∑ , (2.3) 

and in general: 

 ( 1)( ) ( 1)

1

m
nn n n

i i kik
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V V pν ψ−−

=
= + ∑ , (2.4) 
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( 2) ( 1)( ) ( 1)

1 1 1 1
( 1) ( 1) ( ) ( ).

m m m m
n nn n

i i ik kj kj ik kj kj
k j k j

V V n p p n n p p nν ψ ν γ− −−

= = = =

= + − − +∑ ∑ ∑ ∑  (2.6) 

In the first case we have only fixed permanence rewards, in the other two cases 
we have variable permanence, transition rewards and interest rates. 
Figure 2.3 can be associated to relation (2.4). It will be possible also to describe 
the due case by means of a similar figure. 
The figure clearly shows that MRWP can be considered a natural generalisation 
of the annuity concept. 
Any case of MRWP can be seen as a generalisation of the annuity concept.  
We think that the connection between Markov reward processes and annuities is 
natural and that an annuity can be seen as the Markov reward process with only 
one state and only permanent rewards; for more details see Janssen and Manca 
(2004c).  
In this light, in the finance environment, we can define Markov reward processes 
as stochastic annuities.  
This first step also allows us to generalize also the payments of the annuities. In 
fact as we saw before, the rewards can be of permanence and of transition  

Figure 2.3: constant immediate stochastic annuity 
 

(impulse reward) types; furthermore the permanence rewards can be independent 
from the transition or they can depend on the transition. All these kinds of 
rewards can be fixed or can vary with time.  
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In the case of simple annuity the rate can vary only because of time; in the case 
of stochastic annuity, clearly it can vary in the same way as the rewards because 
the rewards represent the generalization of the payments. 
 
2.2 HSMRWP And Stochastic Annuities Generalization 
 
This section will develop the semi-Markov extension of stochastic annuities. 
For the sake of simplification the discrete time case will be discussed before the 
continuous one. 
As an example of a potential application, it is known that, usually, an insurance 
contract makes provision with the premiums paid by the insured person to pay 
the claim amounts and to distribute some benefits to the shareholders or to some 
public organization. The benefit level but also the premium level could change as 
a function of the situation (state) in which the insured person may be.  
In our opinion an insurance contract is a typical example of a generalized 
stochastic annuity (GSA) as defined below. 
 
Definition 2.1 A generalized stochastic annuity (GSA) is an annuity in which the 
payments are a function of the state of the system and the time of the transitions 
among the states is stochastic. 
 
The difference between a generalized stochastic annuity and a stochastic annuity, 
in discrete time environment, is in the fact that the time of the next transition is a 
random variable. 
A GSA can be homogeneous or non-homogeneous.  
It is homogeneous if the randomness of the time depends only on the duration 
between two transitions and it is non-homogeneous if the transitions are functions 
of the running time. 
The simplest cases, as already shown, can be treated in a homogeneous 
environment; in some more composite cases it will require the non-homogeneous 
environment 
The formulas of a GSA in the homogeneous case are the ones given for the 
continuous case in Chapter 4. 
Janssen and Manca (2006) give models that could be used to construct a “GSA” 
for the insurance problem, using the simple examples given in Haberman and 
Pitacco (1999).  
From all these examples we think that the most interesting is the one depicted in 
Figure 2.4. in which the weighted directed graph related to the first matrix is 
given. 
To give an example of a GSA we will develop a case giving four different sets of 
data. In the four cases the following two different embedded Markov chains will 
be used: 



 
 
 
 
 
 
Finance and Insurance models                                                                             249 

 

 
0.9 0.096 0.004
0.4 0.592 0.008
0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

P    
0.9 0.096 0.004

' 0.8 0.192 0.008 .
0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

P  (2.7) 

For each one of these matrices, we will consider a case without any constraint on 
the waiting time distribution functions of the waiting (called case 1) and another 
case with as constraints (called case 2): 
 (1) 0.5, , 1, ,3ijF i j≥ = … . (2.8) 
The permanence reward vector will be: 

 
200

1200
0

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

ψ . (2.9) 

 
Figure 2.4 

 
The value − 200 is the yearly premium that the insured person will pay for 
his/her insurance and  
1200 is the benefit that she/he will receive from the insurance company when 
she/he is disabled. 
In the dead state, the permanence reward will be 0. 
Using a DTHSMRW model, the following relations are obtained: 
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 3 ( ) 0, 1, ,V t t T= = … . (2.12) 
Our time horizon is ten years and we only consider the due case, as usually 
premiums are paid at the beginning of each insured period. 
The d.f. ijF , i,j=1,2,3 will be constructed in the program by means of a 
pseudorandom number generator taking into account the given constraints; some 
of their values are given in Table 2.1.1 and Table 2.1.2 for the two considered 
cases: 

Matrix F  
F(1) F(3) F(5) 

0.1514 0.144 0.1398 0.3884 0.3767 0.3937 0.5917 0.4724 0.6387 
0.0617 0.1675 0.0031 0.3556 0.189 0.1474 0.4568 0.3163 0.3041 

1 1 0 1 1 0 1 1 0 
F(7) F(9) F(10) 

0.744 0.634 0.8232 0.8838 0.8668 0.871 0.9232 0.9384 0.9581 
0.6772 0.5729 0.5415 0.855 0.8002 0.8431 0.9527 0.9884 0.9774 

1 1 0 1 1 0 1 1 0 
Table 2.1.1:case 1 

 
Matrix F’  

F´(1) F´(3) F´(5) 
0.5763 0.5712 0.5675 0.7034 0.694 0.6987 0.8125 0.7445 0.8254 
0.5273 0.5794 0.4969 0.6801 0.5902 0.57 0.7327 0.654 0.6494 

1 1 0 1 1 0 1 1 0 
F´(7) F´(9) F´(10) 

0.8941 0.8297 0.9207 0.9691 0.9526 0.9455 0.9902 0.9904 0.9905 
0.8473 0.7827 0.7698 0.9397 0.8966 0.9226 0.9905 0.991 0.9907 

1 1 0 1 1 0 1 1 0 
Table 2.1.2: case 2 

Table 2.2 presents the results in the four cases (s.s. means starting state). 
 

I Case 1 and matrix P  II Case 1 and matrix P´ 
time s.s. 1 s.s. 2 s.s. 3  s.s. 1 s.s. 2 s.s. 3 

1 -200 1200 0 1 -200 1200 0 
2 -375 2331 0 2 -375 2298 0 
3 -531 3330 0 3 -532 3168 0 
4 -664 4234 0 4 -667 3897 0 
5 -784 5070 0 5 -791 4532 0 
6 -892 5864 0 6 -905 5122 0 
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7 -973 6584 0 7 -995 5598 0 
8 -1045 7215 0 8 -1079 5947 0 
9 -1103 7755 0 9 -1151 6167 0 

10 -1136 8239 0 10 -1203 6332 0 
III Case 2 and matrix P  IV Case 2 and matrix P´  

 s.s. 1 s.s. 2 s.s. 3  s.s. 1 s.s. 2 s.s. 3 
1 -200 1200 0 1 -200 1200 0 
2 -319 2074 0 2 -319 1787 0 
3 -406 2789 0 3 -422 2224 0 
4 -473 3419 0 4 -512 2586 0 
5 -526 3994 0 5 -595 2900 0 
6 -566 4535 0 6 -670 3188 0 
7 -587 5023 0 7 -728 3416 0 
8 -595 5447 0 8 780 3576 0 
9 -591 5804 0 9 -826 3665 0 

10 -572 6118 0 10 -860 3726 0 
Table 2.2 

 
The reader can easily see that the waiting time d.f. plays a very important role in 
the SMP environment and moreover that a consistent change of probabilities in 
the embedded Markov chain also gives differences in the results. 
The considered constraint on the waiting time d.f gives a sensible decrease of the 
waiting time and explains a bigger change in the results.  
 
3 SEMI-MARKOV MODEL FOR INTEREST RATE 
STRUCTURE 
 
3.1 The Deterministic Environment 
 
Usually, in a deterministic environment, relation (1.15) implies that: 

 
1 2

2 1 2 1
1 2

1 1
1 2

1 if ,
( , , ) 1 if ,

1 if .

t t
S t t S t t
S S

t t

ϕ
> <⎧

⎪= = = =⎨
⎪< >⎩

 (3.1) 

This ratio can be seen as a transformation coefficient giving the value at time 2t  
of a unity account available at time 1t . 
Starting now from (1.14) where 2S  depends on 1S , we have to suppose that 
 1 1 2 2 1 1 2 2( , ) ( , ) ( , ) ( , )S t S t kS t kS t k +≈ ⇔ ≈ ∀ ∈ . (3.2) 

Then with
1

1k
S

= , it results that: 
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 2
1 1 2 2 1 2

1
( , ) ( , ) (1, ) , ,SS t S t t t k

S
+⎛ ⎞≈ ⇔ ≈ ∀ ∈⎜ ⎟

⎝ ⎠
 (3.3) 

or from the dynamic point of view: 
 2 1 2 1 2 1 1 2( , , ) ( , ,1)S t t S S S t tϕ ϕ= ⇔ = . (3.4) 
This last relation means that it is possible to ignore the third variable and to 
simply write: 
 2 1 1 2( , )S S z t t= . (3.5) 
Also taking into account time homogeneity, the transformation coefficient 
becomes: 
 2 1 2 1 1( ) ( )S S z t t S z t= − = . (3.6) 
If 0t > , then ( ) 1z t >  and it results that: 
 ( ) ( ) 1r t z t= − , (3.7) 
and so in this special case, the interest rate r(t) at time t is defined as in the 
classical way. 
 
3.2 The Homogeneous Stochastic Interest Rate Approach 
 
Even with the preceding simplifications, starting with the homogeneity 
assumption with respect to time and sums, the interest rate remains one of the 
most unpredictable objects. 
But as in the case of sums, it is possible to assume that the rate will vary inside a 
finite interval: 
 [ ]', "r r r∈ . (3.8) 
Under the condition (3.8), we start with a model having continuous state space, 
but for the sake of applications, as in the previous section, we will work with 
only a finite number of states, i.e.: 
 { }1 2, , , mr I r r r∈ = … . (3.9) 
From theoretical and numerical points of view, this assumption implies strong 
simplification. 
For real life applications, the interest rates are usually fixed in a discrete range, 
with as the smallest unit the basic point having for value 0.01%. 
As specified above, time will also be on a discrete scale and by means of 
DTHSMP of kernel Q, we will be able to follow the time evolution of the interest 
rate in a given time horizon.  
The evolution of the interest rate in time gives a yield curve and term structure of 
implied forward rates.  
This time the functions ( )ijF t  represent waiting time d.f. of the interest rate 
change from state ir  to state jr , i,j=1,…,m. 
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The function ( ), ,ij t i j Iφ ∈  of our semi-Markov process in discrete time process 
( , 0,1,..., )tZ Z t T= =  represents the probability that at time t the interest rate will 

be ,jr  given that the interest rate was ir  at time 0.  
As before, this probability is obtained by the sum of the two terms: 
 (1 ( ))ij iH tδ −   , 1,2,...,i j m= , (3.10) 
giving the probability of remaining in the starting initial interest rate  without any 
change in [0, t] and has meaning only if i j=  and the second term, 

 
1 0

( ) ( )
m t

ih hj
h

b t
θ

θ φ θ
= =

−∑∑ , (3.11) 

giving the probability that the interest rate is equal to jr  after a time t, given that 
it was ir  at time 0 and it reaches the new value with at least one state change (the 
first one in θ ). 
If ( )i θΓ  represents the r.v. interest rate related to the period ( 1, ) (0, )Tθ θ− ⊂  
with values jr I∈  and ( )ijφ θ  its conditional probability distribution, given that 
at time 0 the interest rate was ir , we get the mean interest rate and, as risk 
measure, the related variance: 

 
1

( ( )) ( )
m

i ij j
j

E rθ φ θ
=

Γ = ∑  (3.12) 

and: 
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2 2

1 1
( ( )) ( ) ( ) .

m m

i ij j ij j
j j

r rσ θ φ θ φ θ
= =

⎛ ⎞
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⎝ ⎠
∑ ∑  (3.13) 

 
3.3 Discount factors 
 
The quantity 
 ( ) 1( ) 1 ( )i iθ θ −ϒ = + Γ  (3.14) 
is the random discount factor related to the period [ ] [ ]1, 0, hθ θ− ⊆ , 
depending on the period and  

 
1

( ) ( ).
h

i iA h
θ

θ
=

= ϒ∏  (3.15) 

The independence hypothesis among the random discount factors ( )i θϒ  is 
assumed. 
This assumption of the independence of stochastic interest rates ir  can be 
considered equivalent to the independence of the increments of invested sums. 
Now the expected values and the variances are given by: 
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and for the second ones, generalising the computation of 2 ( )XYσ : 
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 (3.20) 

( , )qC h θ∈ C , where ( , )h θC  is the  set of all θ−combinations of the set 
{ }1, ,h… , and 

 
{ }

2 2( ) ( ( )),
( ) ( ( )),

1, , .

i i

i i

q q

E
C D h

σ λ σ λ
μ λ λ

= ϒ⎧
⎪ = ϒ⎨
⎪ =⎩ ∪ …

 (3.21) 

Once the ( )i hγ  are known, it is possible to evaluate the mean present value of a 
given financial operation that begins at time 0 and ends at time h. 
Clearly, if the value at time 0 is known, the mean value at time h will be obtained 
multiplying the initial value by 1 ( )i hν . 
The knowledge of the expected value and variance of ( )iA h  allows important 
applications in risk control. In particular it allows decisions and choices in 
financial projects by using the mean-variance criterion.  
Instead of directly using relation (3.19) for computation, we can use the formula 
for the computation of the two independent variables iteratively as follows: 
computing first the variance of the first two variables, then considering 
successively the result as a variance of one variable and doing the computation of 
the variance of two variables, taking the one obtained from the first two and the 
third variable and so on.    
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To illustrate numerically the preceding model, let us suppose that we are 
interested in the dynamic evolution of a stochastic interest rate whose possible 
values are restricted to the ones given in Table 3.1 and on a ten year time horizon 
The first row of the table contains the states and the second row the related 
interest rate values. 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
.03 .035 .04 .045 .05 .055 .06 .065 .07 .075 .08 .085 .09 .095 .1 

Table 3.1: homogeneous discount factor states 
In this way we have 15 states and 11 time periods, from time period 0 up to the 
time period 10. 
To get results we constructed a “Mathematica” program able to solve DTHSMP 
based on the following data: 
a) the transition matrix P , embedded Markov chain in DTHSMP;  
b) the matrix ( )tF , waiting time distribution functions. 
As explained in Chapter 4 the matrix values can be obtained by means of 
observation on real data; in this example we filled up both matrices with 
pseudorandom numbers. 
The transition matrix P  is a square matrix of order 15. 
Filling up this matrix we supposed that the transition probabilities were bigger in 
the three mean diagonals and that they decrease moving away from them.  
The matrix ( )tF  is formed by 11 square matrices, each one of order 15. It results 
that: 
 { } { }( ) 0 , , 1, ,15 , 1, ,10ijF t i j t> ∈ ∈… … . (3.22) 
As we are working in the transient case, with a 10 year horizon time, we consider 
all these distribution functions trimmed at the last period.  
After the construction of the embedded Markov chain and the distribution 
functions we were able to apply the DTHSMP, which is solved as described in 
Chapter 4 to get the following probability distributions: 
 { } { },1 ,15( ), , ( ) with  1, ,15 and  0, ,10i it t i tφ φ ∈ ∈… … …  (3.23) 
to compute for each i, t the interest rate mean values and related standard 
deviations. 
The results of the example tables are reported on the following pages.  
The rows of each table represent the time and the columns the states of the 
system at initial time. 
The uni-period mean discount factors ( )( )iE V θ  are reported in Table 3.2, the 
mean discount factors form 0 to h, ( ( ))iE A h  in Table 3.3 and the variances 

2 ( ( ))iA hσ  in Table 3.4.  
 

3.4 An Applied Example In The Homogeneous Case 
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3.5 A Factor Discount Example In The Non-Homogeneous 
Case 
 
As the interest rate and the discount factors are fundamentally non-homogeneous 
phenomena, it is interesting to see that the same kind of example can be provided 
also in a non-homogeneous environments.  
The state values and their numbers were changed mainly because the number of 
results in the non-homogeneous case is by far larger and in this way the results 
can be given easily. 
All the remarks given in sections 3.2 and 3.3 hold in the non-homogeneous 
environment and to repeat all the formulas for this case could be tedious. 
This time we have nine states given in Table 3.5. 
 

States 1 2 3 4 5 6 7 8 9 
int rate 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 

disc fact 0.9901 0.9852 0.9804 0.9756 0.9709 0.9662 0.9615 0.9569 0.9524 
Table 3.5: discount factor model state  

The non-homogeneous uni-period mean discount factors obtained with the 
expected value using the transition probabilities ( , )ij s tφ , a solution of the 
DTNHSMP, are given in Table 3.6. 
The elements in the first column give the couple (s,t) and the corresponding mean 
uni-periodic discount factor. 
 

Time 1 2 3 4 5 6 7 8 9 
0-1 0.9901 0.9852 0.9804 0.9756 0.9709 0.9662 0.9615 0.9569 0.9524 
0-2 0.9887 0.9845 0.9795 0.9755 0.9713 0.9665 0.9619 0.9575 0.9543 
0-3 0.9879 0.9828 0.9783 0.9754 0.9712 0.9668 0.9626 0.9584 0.9556 
0-4 0.9868 0.9817 0.9773 0.9751 0.9714 0.9673 0.9630 0.9593 0.9570 
0-5 0.9856 0.9805 0.9768 0.9751 0.9716 0.9674 0.9637 0.9602 0.9581 
0-6 0.9836 0.9791 0.9762 0.9744 0.9715 0.9679 0.9642 0.9615 0.9595 
0-7 0.9823 0.9779 0.9756 0.9740 0.9711 0.9685 0.9647 0.9625 0.9614 
0-8 0.9806 0.9767 0.9747 0.9735 0.9710 0.9685 0.9658 0.9633 0.9626 
0-9 0.9793 0.9759 0.9742 0.9731 0.9709 0.9688 0.9663 0.9647 0.9644 
0-10 0.9780 0.9749 0.9737 0.9727 0.9713 0.9693 0.9671 0.9661 0.9662 
0-11 0.9760 0.9737 0.9729 0.9720 0.9714 0.9697 0.9687 0.9676 0.9673 
3-4 0.9901 0.9852 0.9804 0.9756 0.9709 0.9662 0.9615 0.9569 0.9524 
3-5 0.9883 0.9844 0.9798 0.9751 0.9712 0.9669 0.9620 0.9582 0.9552 
3-6 0.9866 0.9833 0.9786 0.9745 0.9717 0.9677 0.9624 0.9600 0.9569 
3-7 0.9844 0.9819 0.9776 0.9746 0.9716 0.9679 0.9636 0.9615 0.9588 
3-8 0.9830 0.9800 0.9764 0.9738 0.9715 0.9682 0.9655 0.9627 0.9600 
3-9 0.9809 0.9789 0.9760 0.9731 0.9714 0.9689 0.9662 0.9640 0.9617 
3-10 0.9783 0.9775 0.9746 0.9727 0.9711 0.9701 0.9677 0.9650 0.9634 
3-11 0.9758 0.9748 0.9739 0.9719 0.9715 0.9704 0.9693 0.9670 0.9659 
6-7 0.9901 0.9852 0.9804 0.9756 0.9709 0.9662 0.9615 0.9569 0.9524 
6-8 0.9880 0.9833 0.9787 0.9744 0.9705 0.9668 0.9628 0.9592 0.9558 
6-9 0.9857 0.9807 0.9766 0.9731 0.9708 0.9673 0.9653 0.9622 0.9588 
6-10 0.9822 0.9787 0.9754 0.9734 0.9714 0.9681 0.9662 0.9649 0.9621 
6-11 0.9777 0.9754 0.9745 0.9729 0.9715 0.9698 0.9673 0.9669 0.9648 

Table 3.6: non-homogeneous uni-period discount factors 
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Table 3.7 gives the mean discount factors related to all the considered time 
periods. 
 

Time 1 2 3 4 5 6 7 8 9 
0-1 0.9901 0.9852 0.9804 0.9756 0.9709 0.9662 0.9615 0.9569 0.9524 
0-2 0.9789 0.9700 0.9603 0.9517 0.9430 0.9338 0.9249 0.9163 0.9089 
0-3 0.9670 0.9532 0.9395 0.9283 0.9159 0.9029 0.8904 0.8781 0.8685 
0-4 0.9543 0.9358 0.9182 0.9052 0.8897 0.8733 0.8575 0.8424 0.8312 
0-5 0.9406 0.9175 0.8969 0.8827 0.8645 0.8449 0.8264 0.8089 0.7964 
0-6 0.9251 0.8984 0.8755 0.8600 0.8399 0.8177 0.7967 0.7777 0.7642 
0-7 0.9088 0.8785 0.8541 0.8377 0.8156 0.7919 0.7686 0.7485 0.7346 
0-8 0.8911 0.8580 0.8325 0.8155 0.7919 0.7670 0.7424 0.7211 0.7072 
0-9 0.8726 0.8374 0.8110 0.7935 0.7688 0.7430 0.7174 0.6956 0.6820 
0-10 0.8535 0.8163 0.7897 0.7718 0.7468 0.7202 0.6938 0.6720 0.6589 
3-4 0.9901 0.9852 0.9804 0.9756 0.9709 0.9662 0.9615 0.9569 0.9524 
3-5 0.9785 0.9699 0.9606 0.9513 0.9429 0.9343 0.9250 0.9169 0.9097 
3-6 0.9653 0.9537 0.9401 0.9271 0.9163 0.9041 0.8902 0.8803 0.8705 
3-7 0.9503 0.9364 0.9190 0.9035 0.8902 0.8751 0.8578 0.8464 0.8346 
3-8 0.9341 0.9177 0.8974 0.8798 0.8649 0.8472 0.8282 0.8148 0.8012 
3-9 0.9163 0.8983 0.8759 0.8562 0.8401 0.8209 0.8002 0.7854 0.7705 
3-10 0.8964 0.8781 0.8536 0.8328 0.8159 0.7963 0.7744 0.7580 0.7423 
6-7 0.9901 0.9852 0.9804 0.9756 0.9709 0.9662 0.9615 0.9569 0.9524 
6-8 0.9782 0.9687 0.9595 0.9506 0.9423 0.9341 0.9258 0.9179 0.9103 
6-9 0.9641 0.9501 0.9371 0.9250 0.9148 0.9036 0.8936 0.8832 0.8728 
6-10 0.9470 0.9298 0.9140 0.9005 0.8886 0.8748 0.8634 0.8522 0.8397 

Table 3.7: non-homogeneous discount factors 
 
The last results reported inTable 3.8 give the variance matrix related to the 
discount factors of Table 3.7 
 

time 1 2 3 4 5 6 7 8 9 
0-1 0.00003 0.00002 0.00002 0.00001 0.00001 0.00001 0.00001 0.00001 0.00004 
0-2 0.00007 0.00007 0.00006 0.00003 0.00002 0.00003 0.00003 0.00003 0.00011 
0-3 0.00012 0.00015 0.00011 0.00006 0.00005 0.00006 0.00006 0.00007 0.00017 
0-4 0.00019 0.00023 0.00016 0.00009 0.00008 0.00010 0.00009 0.00011 0.00024 
0-5 0.00028 0.00032 0.00022 0.00013 0.00011 0.00015 0.00012 0.00015 0.00031 
0-6 0.00037 0.00042 0.00029 0.00018 0.00015 0.00020 0.00016 0.00020 0.00038 
0-7 0.00047 0.00051 0.00035 0.00024 0.00020 0.00024 0.00020 0.00025 0.00044 
0-8 0.00056 0.00059 0.00042 0.00029 0.00025 0.00029 0.00024 0.00030 0.00049 
0-9 0.00065 0.00067 0.00048 0.00034 0.00030 0.00034 0.00029 0.00035 0.00054 
0-10 0.00073 0.00073 0.00054 0.00040 0.00035 0.00039 0.00034 0.00039 0.00058 
3-4 0.00004 0.00002 0.00001 0.00002 0.00002 0.00003 0.00001 0.00003 0.00006 
3-5 0.00011 0.00006 0.00005 0.00006 0.00004 0.00007 0.00003 0.00007 0.00015 
3-6 0.00021 0.00012 0.00011 0.00011 0.00008 0.00012 0.00007 0.00013 0.00024 
3-7 0.00032 0.00021 0.00017 0.00017 0.00013 0.00017 0.00013 0.00020 0.00032 
3-8 0.00043 0.00029 0.00024 0.00023 0.00019 0.00022 0.00019 0.00026 0.00040 
3-9 0.00055 0.00038 0.00031 0.00030 0.00025 0.00028 0.00026 0.00032 0.00047 
3-10 0.00066 0.00047 0.00039 0.00036 0.00031 0.00035 0.00032 0.00038 0.00053 
6-7 0.00005 0.00005 0.00004 0.00003 0.00002 0.00003 0.00003 0.00004 0.00008 
6-8 0.00012 0.00012 0.00013 0.00008 0.00006 0.00007 0.00010 0.00012 0.00018 
6-9 0.00022 0.00022 0.00022 0.00014 0.00012 0.00014 0.00018 0.00022 0.00028 
6-10 0.00035 0.00032 0.00032 0.00023 0.00020 0.00022 0.00026 0.00031 0.00038 

Table 3.8: variance of non-homogeneous discount factors 
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4 FUTURE PRICING MODEL 
 
The discrete time Homogeneous Semi-Markov Process can also be used for 
pricing futures. 
Let us consider an asset observed on a discrete time scale 
 { }0,1, , , , ,t T T < ∞… …  (4.1) 
having Y(t) as t market value of the future contract at time t. 
In order to make the basic stochastic process 
 { }( ); 0,1, ,Y t t T= …  (4.2)  
suitable to this model, it is supposed that the future has minimal and maximal 
values so that the set of all possible values is the closed interval [ ]min max,Y Y  
partitioned in a set of m states. By letting 

 max min ,
1

Y Y
m

−
Δ =

−
 (4.3) 

the state space is given by: 

 
{ }
{ }

min min min min max

1 2

, , 2 , , ( 2) , ,
, , , .m

I Y Y Y Y m Y
S S S

= + Δ + Δ + − Δ

=

…
…

 (4.4) 

The next step is the description of how it is possible to follow the time evolution 
of a future contract by means of a DTHSMP.  
Application of the homogeneous semi-Markov model requires that the state 
transitions follow a homogeneous finite Markov process. Moreover it is supposed 
that the waiting time in the state before a transition follows a discrete Markov 
process. The last hypothesis introduces randomness in the waiting times in the 
sense that, when the process arrives at a state, it can stay in this state for a 
random time. The evolution equation represents the probability that the process, 
once arrived at state i, representing the future value iS , will be in state j at time t. 
This peculiarity distinguishes the semi-Markov approach from all other 
approaches in literature. 
Indeed, most of the pricing models usually only introduce the Markov 
assumption for state transitions.   
As the states { }1 2, , , mS S S…  represent possible future values, it is not necessary 
to use the interest rates, and no assumption of the term structure of interest rates 
is needed as, for example in the cost of carry model (CCM), one of the most 
widely used models in the literature of pricing futures contracts, using 
randomness by giving a stochastic term structure of interest rates.  
The model considered, as already mentioned, is homogeneous in time.  
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The process evolution equation can be explained by reference to the application 
shown here. Given the set of states I, that represents the set of possible prices of 
the future contract, by supposing that, at time 0, the future price is iS , the process 
evolution equation gives the probability of the future price being jS  at time t. 
Such a probability is given by the two addends: ( )ijd t  (this is different from 0 if 
and only if i=j) represents the probability that the future price is equal to the 
starting price without any change in the state within a time t. The second addend 
represents the probability that the future price is jS  at time t and that it arrives in 
this state having changed states at least once.     
The ( )i tφ ∗  represents a distribution function. Then it is also possible to compute 
the expectation [ ]( )E Y t , the variance and the value at risk (VaR). 
Note that the randomness, by means of a semi-Markovian approach, is 
introduced over the length of the investment. This fact, as far as the authors 
know, has never been considered in derivative pricing literature. 
 
4.1 Description Of Data 
 
A total 7,408 records which refer to the primary future stock index market 
(Fib30) bought from March 27th 1998 to September 17th 1998 (expiry date) have 
been analysed.  Each record was filled by data contained in the following fields:  
Date, Operation (buy or sell), Contract amount, Price, Customer identification. 
All the prices of the contracts, expressed in Italian lire, belong to the range 
[27,955; 39,490]. In order to reconstruct precisely all the market movements of 
future traders, the file uses only units in the field of contract amount. In such a 
way, 10,394 unit financial operations made by 36 different traders are obtained. 
 

T 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 
# 5917 1495 707 549 445 331 209 153 86 

Table 4.1.1: duration days of contract I part 
 

T 9-10 10-11 11-12 12-13 13-14 15-16 17-17 
# 6 6 6 6 10 6 6 

Table 4.1.2: duration days of contract II part 
 

The holding period of the future contract varies between a minimum of one day, 
i.e., the trader holds the asset for a period variable from 0 to 24 hours (intraday), 
and a maximum of 17 days. As shown in Table 4.1, 5.917 contracts belong to the 
former subclass, and only six contracts belong to the latter.  
The holding periods are summarized in Table 4.1, where the # symbol represents 
the number of the futures contracts and t the holding periods, expressed in days. 



 
 
 
 
 
 
Finance and Insurance models                                                                             261 

 

In order to simplify the problem, the time is discretized into nine subclasses of 
one day each, and contracts held for a time longer than eight days are also added 
to the last subclass. Moreover, the future prices are discretized into 122 
subclasses that are the states of the stochastic process. Each subclass is equal to 
100 Italian lire and in the first class, we find the futures priced at less than 28,000 
Italian lire; in the last, all the contracts having prices ranging from 40,001 to 
40,100 Italian lire. We used Italian lire because we get real data for this example. 
 
4.2 The Input Model 
 
In order to implement the solving procedure, we need the following inputs: 
m=122 (number of states of SMP). 
T=9 (number of periods examined for the transient analysis of SMP). 
The transition matrix P of the embedded MC in SMP and the square lower-
triangular block matrix T F of order 10, the blocks of which are of order 122, are 
built as follows.  
First, the starting file is divided into 38 different files referring to the traders. 
Then, the files are ordered on the date field and the first record with label B (buy) 
is supposed to match the first record with label S (sell). In other words, the first 
future sold by a certain trader, is the one bought from the same individual at the 
more recent date, and so on for the subsequent records.  
In this way, a new file formed by the following fields for each trader is obtained: 
Buying date; Buying price; Sale date; Sale price. 
Next, all the records related to a fixed holding period are taken from these files. 
In this way, nine files of the holding periods { }0,1, ,8…  are constructed, each file 
containing all the movements traders made during that fixed holding period, and 
ending with the buying price and the related sale price. 
Then the matrices of the holding periods are filled with the frequencies taken 
from the previous files. In this way, nine square matrices of order 122, one for 
each holding period, of the frequencies of the future contracts bought and sold at 
the respective prices are obtained.  
The elements of the matrices, the ija , are the frequencies of the futures bought at 
price i and sold at price j. 
The transition matrix P of the embedded MC in SMP and the probability 
distribution functions stored in the square lower-triangular block matrix T F  of 
order 10, with blocks of order 122, are obtained as described in Chapter 4, 
section 4. 
Note that the distribution functions used as inputs for matrix T F  are derived 
directly from the raw data. Usually in other SMP applications the standard 
distributions such as Poisson or Exponential were used, and only the parameters 
of such distributions were estimated by means of the raw data. 



 
 
 
 
 
 
262                                                                                                             Chapter 6 

 

 
4.3 The Results 
 
After solving the evolution equation of the semi-Markov model, a large amount 
of information can be obtained. For each time { }1,2, ,t T∈ …  and for each 
starting state { }1,2, ,i I m∈ = … , ( )ij tφ  represents the probability distributions 
defined by the evolution equation DTHSMP. Unfortunately, it is not possible to 
show the obtained probability distributions because of the huge amount of data 
(133,956). They are, however, available upon request. After computing these 
probabilities distributions it is possible to compute some statistic indices useful to 
the investor. 
The price at time 0 (starting state), the price expectation of the future contract at 
the expiry date (time 9), the corresponding sigma square, the present value at 
time zero considering a risk rate per year of 4% and the corresponding value at 
risk with 5% of probability are reported in Table 4.2. 
By means of the expectation value, an investor may forecast his own return with 
a certain risk estimated by means of the standard deviation.  
For the sake of accuracy, present values are also computed, although the time is 
very short. In order to do this, the financial operations traded in a unit period time 
are supposed to be made at midday. For example, the data related to the 9-th day 
is discounted for 8.5 unit periods. 
The value at risk (VaR), already introduced in this chapter gives the investor the 
possibility of estimating a risky investment. 
With the knowledge of the probability distributions ( )ij tφ , it is possible to 
compute the value of the random variable with a probability less than a fixed 
threshold.  
When a threshold is fixed equal to 5%, the values of the last column in Table 4.2 
provide the information that, with probability 0.95, the value of the future will be 
greater than the value obtained in column two of the same table, that is the VaR 
value at 95%. 
As our r.v. are finite, first of all, we must compute the values of k such that: 

 
1

( ) 0.05.
k

ij
j

tφ
=

<∑  

and 

 
1

1
( ) 0.05.

k

ij
j

tφ
+

=
≥∑  

Then, the values of the random variable corresponding to the kth and the k+1th 
state are linearly interpolated, obtaining the hypothetical value corresponding to a 
cumulated probability equal to 5%. 
For brevity we report in Table 4.2 only the first 15 and the last 15 rows of the 
results.   
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Finally, Table 4.3 and Table 4.4 present the same data that refers to time 5 and 
to time 1 (intraday trading) respectively. 
As we know, the latter is particularly significant to the problem we have dealt with.
Also in the last two tables, we report the first 15 and the last 15 rows of the results.
All the data including the matrix intermediate results are available upon request.  
The fact that the solution of the SMP evolution equation gives probability 
distributions allows the reader to easily obtain the dynamic evolution of the finan-
cial phenomenon of interest and to estimate the investment risk in different ways.
Finally, the authors would like to draw attention to the simplicity of the model 
and of its use. It was, however, a rather complex procedure to turn the raw data 
into input matrices, since the financial data were ready to be used for the 
homogeneous Markovian models.  
 
starting state price at time 9 sigma square p.v. at time 0 VaR 

     
28,000 28,000 0 27,974 28,000 
28,100 29,905 880 29,878 28,146 
28,200 28,200 0 28,174 28,105 
28,300 29,822 877 29,795 28,245 
28,400 29,974 906 29,947 28,363 
28,500 30,014 899 29,987 28,412 
28,600 30,002 929 29,975 28,386 
28,700 30,056 879 30,028 28,526 
28,800 29,894 874 29,867 28,492 
28,900 30,124 914 30,096 28,462 
29,000 29,948 805 29,921 28,510 
29,100 30,272 954 30,244 28,449 
29,200 30,243 1,104 30,215 28,442 
29,300 30,115 975 30,087 28,393 
29,400 30,090 931 30,062 28,317 
38,700 37,965 517 37,930 37,312 
38,800 38,460 442 38,425 37,784 
38,900 38,900 0 38,864 38,805 
39,000 39,000 0 38,964 38,905 
39,100 38,079 555 38,045 37,317 
39,200 38,756 587 38,720 37,807 
39,300 39,300 0 39,264 39,205 
39,400 38,115 567 38,080 36,930 
39,500 39,500 0 39,464 39,405 
39,600 39,600 0 39,564 39,505 
39,700 39,700 0 39,664 39,605 
39,800 39,800 0 39,764 39,705 
39,900 39,900 0 39,864 39,805 

 

40,000 40,000 0 39,963 39,905 
40,100 40,100 0 40,063 40,005 

Table 4.2: Value at expiry date 
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starting state price at time 5 sigma square p.v. at time 0 VaR 

     
28,000 28,000 0 27,986 28,000 
28,100 29,024 626 29,010 28,343 
28,200 28,200 0 28,186 28,105 
28,300 29,193 445 29,179 28,536 
28,400 29,317 727 29,303 28,401 
28,500 29,452 411 29,438 28,706 
28,600 29,624 631 29,610 28,571 
28,700 29,863 548 29,848 29,001 
28,800 29,686 412 29,671 29,303 
28,900 29,706 521 29,692 28,826 
29,000 29,964 401 29,949 29,426 
29,100 29,978 566 29,963 29,048 
29,200 29,769 1,071 29,754 28,099 
29,300 29,962 821 29,947 28,791 
29,400 29,897 807 29,882 28,770 
38,700 38,615 288 38,597 37,930 
38,800 38,813 286 38,794 38,215 
38,900 38,900 0 38,881 38,805 
39,000 39,000 0 38,981 38,905 
39,100 38,539 307 38,520 37,850 
39,200 38,818 471 38,799 38,025 
39,300 39,300 0 39,281 39,205 
39,400 38,178 325 38,159 37,829 
39,500 39,500 0 39,481 39,405 
39,600 39,600 0 39,581 39,505 
39,700 39,700 0 39,681 39,605 
39,800 39,800 0 39,781 39,705 
39,900 39,900 0 39,881 39,805 
40,000 40,000 0 39,981 39,905 
40,100 40,100 0 40,081 40,005 

Table 4.3: Value after five days 
 
starting state intraday price sigma square p.v. at time 0 VaR 

     
28,000 28,000 0 27,998 28,000 
28,100 28,484 112 28,482 28,303 
28,200 28,200 0 28,198 28,105 
28,300 28,732 122 28,730 28,504 
28,400 28,563 222 28,562 28,315 
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28,500 28,644 150 28,642 28,410 
28,600 28,926 340 28,925 28,514 
28,700 28,892 200 28,890 28,610 
28,800 28,800 0 28,798 28,705 
28,900 29,017 293 29,015 28,806 
29,000 29,000 0 28,998 28,905 
29,100 29,356 504 29,354 29,007 
29,200 29,608 527 29,606 29,110 
29,300 29,684 288 29,682 29,214 
29,400 29,784 450 29,782 29,310 
38,700 38,719 39 38,717 38,606 
38,800 38,877 158 38,875 38,706 
38,900 38,900 0 38,898 38,805 
39,000 39,000 0 38,998 38,905 
39,100 39,100 0 39,098 39,005 
39,200 39,227 45 39,225 39,107 
39,300 39,300 0 39,298 39,205 
39,400 39,400 0 39,398 39,305 
39,500 39,500 0 39,498 39,405 
39,600 39,600 0 39,598 39,505 
39,700 39,700 0 39,698 39,605 
39,800 39,800 0 39,798 39,705 
39,900 39,900 0 39,898 39,805 
40,000 40,000 0 39,998 39,905 
40,100 40,100 0 40,098 40,005 

Table 4.4: Intraday values  
 
5 A SOCIAL SECURITY APPLICATION WITH REAL 
DATA 
 
5.1 The Transient Case Study
 
The example is similar to the one given in Chapter 2, section 9.7 and in Chapter 3 
section 13 but real life data will now be used with the same invalidity degrees. 
Let us recall that the aim is to calculate in particular the average degree of 
disablement to be expected in given epochs, in view of determining the 
premiums to be paid to the insuring agency by employers in connection with 
disabling professional diseases.  
We assume that the temporal evolution of the disabling disease is the same as in 
the examples mentioned above. 
The data selected for the numerical experiment reflects the situation with 
disabling professional diseases in Campania (Italian region) from 1945 to 1978. 
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They were obtained from about 800 case histories of workers suffering from 
professional diseases. 
The average degree of disablement is calculated according to the following 
expression: 

 
1

( ) ( )
m

i ij j
j

S t t Sφ
=

= ∑  (5.1) 

for a fixed time t, with jS  representing the upper bound disability degree inside 
the jth state.  
Result (5.1) is similar to (13.2) of Chapter 3, but here, we will obtain results in 
transient instead of immediately working asymptotically as before (see result 
13.3 of Chapter 3). 
Furthermore, for P and F we used the following estimators: 

 ij
ij

i

n
p

n
=  (5.2) 

where ijn  is the number of transitions from iS  to jS  and in  is the number of 
observed elements in iS ; 
 ( ) 1 ijt

ijF t e λ−= −  (5.3) 

where ijλ  is the estimated mean sojourn time in state iS  given the state jS  

successively visited. 
The mean degree of disablement was calculated for epochs of 10, 20 and 30 
years. 
Table 5.1 shows matrix P and Table 5.2 gives the degree of disablement at 10, 
20 and 30 years, computed by means of (5.1). 
The ( )tΦ  matrices, here omitted for the sake of brevity, were calculated by the 
program at discrete epochs 1, 2, ..., 10, ..., 20, ...,30. 
Table 5.3 shows the results obtained for the mean degree of disablement at 10, 
20 and 30 years, that are practically identical to those obtained by (De Dominicis 
and Manca (1984b)) using the same data with an asymptotic expression for ( )ij tφ  
as t → ∞  and leading to an asymptotic mean degree of disablement of 82.75%. 
The result is also consistent with that obtained by (De Dominicis and Manca 
(1984b)) using, in the asymptotic case, a stationary MC, yielding a mean degree 
of 82.85%. 
On the basis of Dutch data, and using a stationary MC model, (Yntema (1965)) 
found a value of 79 %, as shown in Chapter 2, result (9.122)) 
In spite of the fact that the approaches followed in the two cases (transient and 
asymptotic) are quite different, it is interesting to note the fast convergence of the 
present method to the asymptotic value. 
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.00000 .82629 .16012 .00906 .00453 

.00273 .01639 .85247 .11475 .01366 

.00000 .01869 .05607 .68225 .24299 

.00000 .00000 .03279 .01639 .95082 
Table 5.1: transition probabilities of the embedded Markov Chain 

 
 years 

state 10 20 30 
1 33.70 34.38 34.43
2 34.12 34.40 34.44
3 52.94 53.22 53.25
4 74.99 75.20 75.21
5 98.09 98.06 98.06

Table 5.2. Mean degree of disablement at 10, 20 and 30 years conditioned by 
the state of entry in the system. 
 

Years 10 20 30 
Mean degree 82.96 83.04 83.05 

Table 5.3: Total mean disability degree at 10, 20 and 30 years 
 
5.2 The Asymptotic Case
 
For the same data, we also study the asymptotic behaviour of the HSMP chain 
given before.  
Figure 5.1 presents the graph related to the transition matrix P given in Table 5.1.
From the graph it is easy to understand that the related Markov Chain is 
irreducible because it is possible to go from one state to all the other states.  
 In this case the stationary probability vector of the embedded Markov chain can 
be computed and is reported in Table 5.4.  
 

1 2 3 4 5 
0.00061 0.03669 0.22228 0.11365 0.62677
Table 5.4: Markov stationary probability vector 

 
From the irreducibility of the Markov chain, it is possible to compute the ( )ijφ ∞  
that are given in Table 5.5. 
 

1 2 3 4 5 
0.000366 0.036774 0.222061 0.117726 0.623073 

.00000 1.00000 .00000 .00000 .00000 

Table 5.5: semi-Markov stationary probability vector 
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Table 5.6 reports the unconditional mean sojourn times, with the year as time 
unit. 
 

1 2 3 4 5 
2.008219 3.353425 3.342466 3.465753 3.326027 

Table 5.6:unconditional mean sojourn times 
 

 
Figure 5.1: P-weighted transition graph  

 
The last table of this section reports the asymptotic mean degrees obtained 
respectively using Markov and semi-Markov models, the results already given in 
the previous subsection. 
 

Markov Semi-Markov 
82.8533 82.75804 

Table 5.7: asymptotic mean degrees 
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6 SEMI-MARKOV REWARD MULTIPLE-LIFE 
INSURANCE MODELS 
 
In this part, we present three different models for insurance applications. 
The first two examples concern the topic of multiple life problems and are strictly 
connected with pension scheme problems. 
These two examples are given to show how to write the related formulas and to 
attempt a first easy approach to pension scheme problems; for these reasons we 
do not tackle in this case the problem of input data.  
The third example is a real-life case concerning the evolution of a disability 
illness. It is similar to the example developed in the previous section but the data 
are different and the example will be developed without using, as previously, a 
negative exponential increasing d.f. but with the distribution functions directly 
obtained from the observed data, and furthermore, we use the reward model.  
The results will be the RMPV and the rewards in this case will be only of 
permanence type. 
The first example will describe a two-life annuity example.  
The typical case is the one of a retired person who can leave his/her pension to 
the spouse.  
Though we want to introduce the age dependence of the pensioners in addition to 
the duration of pension, we will begin the simpler case of fixed death 
probabilities to develop the topic thoroughly in the non-homogeneous case.  
In the non-homogeneous environment it is possible to take into account many 
aspects of pension schemes. Furthermore, as we will show in the last chapter, the 
extension of the non-homogeneous case gives the possibility to consider all the 
relevant aspects of pension schemes. 
First we describe the model by means of a graph. This graphical approach was 
described in Manca (1988). 
Figure 6.1 reports the multiple state graph related to our example. The states of 
the system are the following: 
rs – state in which both the insured, retired and spouse, are living (state 1) 
r – state in which only the direct pensioner is living (state 2) 
s – state in which only the spouse is living (state 3) 
d – state in which both the insured are dead (state 4). 
The transition probabilities of the embedded Markov chain are: 

rsp  - probability of surviving of both the insured 

rp  - probability of surviving of direct pensioner 

sp  - probability of surviving of the spouse 

rsq  - probability of dying in the same period of both the insured persons 

rq  - probability of dying of direct pensioner 

sq  - probability of dying of the spouse. 
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Figure 6.1: two-life annuity 

 
The embedded Markov chain has the following form:  

 
0 0
0 0
0 0 0 1

rs s r rs

r r

s s

p q q q
p q

p q

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

P . (6.1) 

In the non-homogeneous case, the MC matrix structure is similar and the only 
difference is that the non-zero elements will be time dependent. 
The ( )ijF t  and ( , )ijF s t could be constructed by the available data.  
In this case the rewards are only of the permanence type and transition rewards 
make no sense. 
We suppose that permanence rewards will be constant in time and are paid at the 
end of the period, and also that the intensity of interest rate is fixed.  
Under all these assumptions, it is possible to write the reward evolution equations 
in both the homogeneous and non-homogeneous cases as follows: 
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Relations(6.2) and (6.3) give the mean present value of all the rewards received 
by the system starting at time 0 or at time s from state 1 (both the insured are 
living at the given time). The sum of the last elements rises to three because the 
absorbing state doesn’t give any benefit.  
Relations (6.4), (6.5) and (6.6), (6.7) are similar to the previous ones. They give 
the mean present value of the rewards received starting at time 0 or s respectively 
from state 2 or 3. From both these states the only real transition is with state 4 
(dead state).  
The formulas take into account this property and the last element takes into 
account the only transition that is possible, the virtual one. 
The next example will take into account a three-life model.  
In this case, the example could be a pension to a family composed of three 
members, the direct pensioner, her/his spouse and their child. The child will be in 
the position to get the pension up to the end of his life (disabled child).   
Figure 6.2 reports the multi-state graph related to this problem with as states: 
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rsc – state in which all the insured are living (state 1) 
rs – state in which the pensioner and the spouse are living (state 2) 
sc – state in which the spouse and the child are living (state 3) 
rc – state in which pensioner and the child are living (state 4) 
r – state in which only the direct pensioner is living (state 5) 
s – state in which only the spouse is living (state 6) 
c – state in which the child is living (state 7) 
d – state in which all the insured are dead (state 8). 
The transition probabilities of the embedded Markov chain are: 

rscp  - probability of surviving of all the insured people 

rsp  - probability of surviving of the pensioner and the spouse 

scp  - probability of surviving of the spouse and the child 

rcp  - probability of surviving of the pensioner and the child 

rp  - probability of surviving of direct pensioner 

sp  - probability of surviving of the spouse 

cp  - probability of surviving of the child 

rscq  - probability of dying of all the insured people 

rsq  - probability of dying in the same period of both the insured persons 

scq  - probability of dying of the spouse and the child 

rcq  - probability of dying of the pensioner and the child 

rq  - probability of dying of direct pensioner 

sq  - probability of dying of the spouse. 

cq  - probability of dying of the child 
 
The homogeneous transition matrix of the embedded Markov chain is the 
following: 
 

 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0 1

rsc c r s sc rc rs rsc

rs s r rs

sc c s sc

rc c r rc

r r

s s

c c

p q q q q q q q
p q q q

p q q q
p q q q

p q
p q

p q

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

P . (6.8) 
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Figure 6.2: three-life annuity graph 

 
In the non-homogeneous case, the MC matrix structure is similar and the only 
difference is that the non-zero elements will change because of time. 
As before we do not enter into the details for the construction of ( )ijF t  and 

( , )ijF s t .  
We suppose that permanence rewards will be variable in time and will be paid at 
the end of the period and also that the intensity of the interest rate is fixed.  
Now we can write the related CTHSMRW and CTNHSMRW evolution 
equations: 
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From the graph depicted in Figure 6.2, each node constitutes an equivalence 
class and the equivalence classes are: 
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{ } { } { } { } { } { } { } { }1 2 3 4 5 6 7 8, , , , , , , .C rsc C rs C sc C rc C r C s C c C d= = = = = = = =

Class 1C  is the only maximal class and 8C  the only minimal (absorbing, 
essential) class and all the other classes are transient.  
For these reasons once the system is in a state, it cannot come back. 
In the formulas the sum starts always from the initial state. 
For obvious reasons, the absorbing state does not make any contribution to the 
rewards, and is not considered in the last part of each formula.  
In the last six formulas it results that for the starting state the only real transition 
is with state 8 (death state). The formulas take into account this property and the 
last element takes into account the only transition that is possible, the virtual one. 
 
7 INSURANCE MODEL WITH STOCHASTIC 
INTEREST RATES
 
7.1 Introduction 
 
In this section we apply homogeneous or non-homogeneous semi-Markov 
rewards to the actuarial field using a stochastic term structure of implied forward 
rates. 
To apply the model, first it is necessary to solve the semi-Markov evolution 
equation to get the stochastic interest rates problem as presented in section 3 and 
then we have to solve the related homogeneous semi-Markov reward process.  
In the homogeneous reward case the semi-Markov interest model should be 
homogeneous; however in the non-homogeneous case we can have a 
homogeneous or non-homogeneous semi-Markov interest rate model.  
In the non-homogeneous case only the non-homogeneous interest rate model will 
be presented. 
The reward process will be extended with the introduction of stochastic interest 
rates. 
 
7.2 The Actuarial Problem 
 
We now consider a model with m states presented in the graph of Figure 7.1. 
It must be made clear that the arcs depict all possible transitions; they are 
weighted and their weights represent the transition probabilities and the rewards 
that are paid in the case of transition on the arc.  
The weights will be represented by a pair (p,r) where p represents the probability 
and r the related reward, which can be a positive or negative value, depending on 
whether it is respectively an entrance or a payment.  
If p is equal to 0, then r must be 0 because if it is not possible to cross the arc the 
related reward is meaningless. 
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Furthermore, the nodes representing the model states are also weighted and their 
weights represent the permanence reward paid or received remaining in the 
considered state.  

 
Figure 7.1: m states model for insurance models. 

 
All rewards can be fixed or can change during the time evolution of the model. 
The different models can be constructed giving different values for p. For 
example if a node has all the probabilities of leaving the related state equal to 0, 
then this will be an absorbing state. 
 
7.3 A Semi-Markov Reward Stochastic Interest Rate Model 
 
A stochastic term structure of implied forward rates can be constructed by means 
of SMP in both homogeneous and non-homogeneous cases, as explained before. 
As usual the evolution equation of the DTSMP will be the following one: 
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where ( )ij tφ  and ( , )ij s tφ  represent, as already said, the probability that at time t 
the implied interest rate will be jr given that the implied interest rate was ir  at 
time 0 in the homogeneous case and s in the non-homogeneous. We suppose that 
the states of interest rate model are: 
 { }1 2, , , .nE r r r= …  (7.3) 
The related mean discount factors at time h are constructed as explained in 
section 3. 
More precisely ( )hεν  and ( , )s hεν  represent the mean discounting factor for a 
time h given that at epoch 0 (s) the interest rate was rε .  
The states of the reward process are always 
 { }1 2, , , mI S S S= …  (7.4) 
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and the general evolution equations of homogeneous and non-homogeneous 
reward processes in the immediate case are respectively given by: 

 

( )

( )

1 1 1 1 1

1 1 1

1 1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) (1 )(1 ( )) ( ) ( )

(1 ( )) ( ) ( ) ( ),

m t m t

i ik ik ik ik
k k

m t t

ik k i i
k

m t

i ik ik
k

V t b b

b V t swpe H t

swpe H t t

ϑ
ε

ε ε
ϑ τ ϑ

ε
ε ε

ϑ τ

ε
τ

ϑ ψ τ ν τ ϑ γ ϑ ν ϑ

ϑ ϑ ν ϑ ψ τ ν τ

ϕ ψ τ ν τ

= = = = =

= = =

= =

= +

+ − + − −

+ −

∑∑ ∑ ∑∑

∑∑ ∑

∑∑

 (7.5) 

 ( ) ( )

1 1

1

1 1 1 1

1

( , ) (1 ( , )) ( , ) ( , ) ( , )

(1 )(1 ( , )) ( , ) ( , )

( , ) ( , ) , ( , ) ( , ) ,

( , ) ( , ) ( , )

m t

i i ik ik
k s

t

i i
s

m t m t

ik k ik ik
k s k s

ik ik
s

V s t swpe H s t s t s s

swpe H s t s s

b s V t s b s s s

b s s s

ε
ε

τ

ε
τ

ε
ε ε

ϑ ϑ

ϑ

ε
ϑ τ

ϕ ψ τ ν τ

ψ τ ν τ

ϑ ϑ ν ϑ ϑ γ ϑ ν ϑ

ϑ ψ τ ν τ

= = +

= +

= = + = = +

= +

= −

+ − −

+ +

+

∑ ∑

∑

∑ ∑ ∑ ∑

∑
1 1

,
m t

k s= = +
∑ ∑

 
(7.6) 

where: 
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( ) ( ) ( ),
n

j
j

j
V t V tε

β ε βθ φ θ θ
=

− = −∑  (7.7) 

 
1

( , ) ( , ) ( , ),
n

j
j

j
V t s V tε

β ε βθ φ θ θ
=

= ∑  (7.8) 

given that rε was the implied interest rate at time 0.  
Let us point out that in relation (7.7), the term ( )jV tβ θ−  represents the RMPV of 
all the rewards paid or received in a time t θ− , given that the system is in state 
Sβ  and the interest rate is jr .  

At starting time 0 of our study, the known interest rate was rε . The system 
evolves for a time θ  and gets the interest jr  with the probability ( )jεφ θ .  
To compute the mean RMPV, we first need to compute the expected value (7.7) 
and then to use the general formula. 
Similar arguments can be used for relation (7.8) in the non-homogeneous case. 
Furthermore if we don’t know the interest rate at the initial moment, it results 
that: 
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( ) ( ),
n

i iV t p V tε
ε

ε =

= ∑  (7.9) 
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1

( , ) ( ) ( , ),
n

i iV s t p s V s tε
ε

ε =

= ∑  (7.10) 

where: 
 1 2, , , np p p…   (7.11) 
and  
 1 2( ), ( ), , ( )np s p s p s…  (7.12) 
are the initial probability distributions of the r.v. interest rate respectively at time 
0 in the homogeneous case and at time s in the non-homogeneous one.  
In the non-homogeneous case if (7.12) is unknown, we can work in the following 
way: 

 
1

(0, ) (0,0) (0, )
n

i ip s p sε ε
ε

φ
=

= ∑   (7.13) 

where (0,0)ip  are the elements of initial probability distribution and should be 
known. 
The related due cases are given by: 
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In the due case, equations (7.7) and (7.8) become: 
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At last it results that: 
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( ) ( ),
n

i iV t p V tε
ε

ε =

= ∑  (7.18) 

 
1

( , ) ( ) ( , ).
n

i iV s t p s V s tε
ε

ε =

= ∑  (7.19) 

To apply this model we should, in both immediate and due cases, solve the two 
different evolution equations, the first for the rate of interest and the other one for 
the reward process. These equations are obtained with two independent data sets. 
Furthermore, in the solution of the two different evolution equations it is 
supposed that the two phenomena are independent. But this is not a strong 
hypothesis because it is obvious that the interest rate structure doesn’t depend 
upon the evolution of an illness. 
 
In conclusion, the semi-Markov reward models presented in this last section are 
quite general and can take into account two random evolutions, one for the 
interest rate and the other for the evolution of the actuarial phenomena and 
constitute strong models for real life applications.  



 

 

Chapter 7 
 
INSURANCE RISK MODELS 
 
In this chapter, we will first recall the main classical models in risk theory which 
are useful for insurance companies and then extend them fully to the semi-
Markov case. To avoid confusion we adopt the classical actuarial notation of risk 
theory 
 
1 CLASSICAL STOCHASTIC MODELS FOR RISK 
THEORY AND RUIN PROBABILITY 
 
In this section, we will develop Example 4.1 of Chapter 3, first into a general 
case, and then into the particular case of a Poisson process for claim arrivals. 
Let us consider an insurance company, beginning at time 0 with an initial capital 
of amount u (u > 0), also called reserve for insurance companies or equity for 
banks. 
In almost all developed countries, this initial reserve has a minimal amount fixed 
by the government and depending on the turnover of the insurance company. 
Indeed, it is clearly understood that this capital protects customers against the 
possibility that an unlucky company would have to pay a lot of large claims in a 
short period of time, for example for a catastrophic event, and not be liquid 
enough to do so. 
A basic problem, in general solved by actuaries, is to give an objective value for 
this minimal reserve. We will learn later how to solve this fundamental problem. 
Any risk model related to an insurance company is characterized by three "basic" 
processes: 
 
(i)   the first one is the claim number process. This is a stochastic process giving 
the counting process of claims occurring to the customers; 
(ii)  the second stochastic process concerns the claim amounts. In particular, it 
gives the distribution of what the company has to pay when a claim occurs; 
(iii) the last process is related to the income of the company; and it is generally a 
deterministic process since the premiums paid by the customers must be known 
at the origin of the individual contracts. 
 
To any set of assumptions about these three processes, there corresponds a 
particular stochastic risk model. The most important will be presented later. 
This section will only be concerned with two models: the so-called G/G model or 
the E.S. Andersen model, and the P/G model or the Poisson or Cramer-Lundberg 
model. The notation, borrowed from queuing theory, gives information 
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concerning the two d.f. used in these models, one for the interarrival and the 
other one for the claim amounts (G for general means any d.f. and P, for Poisson, 
a negative exponential distribution 
 
1.1 The G/G Or E.S. Andersen Risk Model
 
1.1.1 The Model 
 
The basic assumptions for the G/G model are: 
 
(i)   The claim number process 
Let ( , 1)nX n ≥ represent the stochastic process of interarrival times between 
successive claims. We will suppose that this process is a sequence of i.i.d. non -
negative random variables with A as common d.f., such that: 
a)  A(0) < 1,  (1.1) 

b)  
0

( ) .xdA x α
∞

= < ∞∫   (1.2) 

 
(ii)  The claim amount process 
Let ( , 1)nY n ≥  represent the sequence of successive claim amounts. Here too, we 
will suppose that we have a random sequence of non-negative i.i.d. random 
variables with B as common d.f., such that: 
a) B(0) < 1,  (1.3) 

b) 
0

( ) .ydB y β
∞

= < ∞∫   (1.4) 

Moreover, the sequences ( , 1)nX n ≥  and ( , 1)nY n ≥  are independent and defined 
on a complete probability space ( , , )PΩ ℑ . 
 
(iii) The premium income process 
The classical assumption is that there is a constant, of course positive, premium 
rate c per unit of time, which means that in the time period [0,t], the total amount 
of income for the company is ct. 
 
1.1.2 The Premium  
 
One of the major problems for the company is how to fix the premium rate 
"fairly" while respecting two conditions: 
 
a) the lifetime of the company, that is the period in which its capital is always 
positive, must be, with a very large probability, as long as possible. 
Indeed from the economic point of view, large reserves constitute a factor of 
security but excessive reserves may signify that the premiums are too high. 



 
 
 
 
 
 
Insurance risk models                                                                                          283 

 

b) It is in the best interest of each company to choose c as low as possible but 
without infringing upon its own economic security. 
 
To fix the value of c, let us consider the renewal process ( , 0)nT n ≥  of claim 
arrival times related to the sequence ( , 1)nX n ≥ , with X0=0 a.s.. That is: 

 
0

.
n

n k
k

T X
=

=∑  (1.5) 

Using renewal theory, the associated counting process ( ( ), 0)N t t ≥  defined by 
(2.3) of Chapter 2, gives the total number of claims in (0,t] and from Corollary 
4.2, Chapter 2, relation (4.26), we know that: 

 ( ) 1lim
t

H t
t α→∞

=  (1.6) 

if 
 ( ) ( ( ))H t E N t=  (1.7) 
and so, for large t: 

 ( ( )) .tE N t
α

≈  (1.8) 

Now, from relation (1.4) the mean cost of the total number of claims in (0,t] 
is approximately: 

 tβ
α

. (1.9) 

This last result shows that the mean total cost of claims having to be paid by the 
insurance company during the period (0,t] is  approximately given by ct , where: 

 .c β
α

=  (1.10) 

It follows that if we take this value c  as the constant premium rate per unit of 
time, we have what is called a game, "insurance company-customers" which is 
asymptotically fair. That is why c  is called the pure premium. 
But, unfortunately, we will see later that this choice leads to the ruin of the 
company a.s. on [ )0,∞ . Also, it is necessary to introduce a positive security 
loading η  such that: 
 (1 )c cη= +  (1.11) 
or 

 (1 ) .c βη
α

= +  (1.12) 

In other words, the company must choose the premium rate c such that: 

 .c β
α

>  (1.13) 

Now, c  is called the loading premium. 
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So, if we set c = 1, this relation implies the assumption: 
 α β> , (1.14) 
i.e., the mean interarrival time between two successive claims is larger than the 
mean claim amount. 
Intuitively, this condition warrants good service to the policy holders and it will 
be theoretically justified below. 
In conclusion, we can state that each insurance company has to control two basic 
parameters: its initial reserve or equities u and its security loading .η  Moreover, 
the possibilities open to the insurance companies are dictated by law. 
 
1.1.3 Three Basic Processes  
 
We will now introduce three stochastic processes of fundamental importance in 
risk theory. 
 
1) The accumulated claim amount process 
It is the stochastic process ( ( ), 0)U t t ≥ defined as: 

 
( )

1
( )

N t

n
n

U t Y
=

= ∑  (1.15) 

or as: 
 ( )( ) N tU t U=  (1.16) 
if 

 
1

,
n

n i
i

U Y
=

=∑  (1.17) 

always using the classical convention that the value of a sum over a void set is 
zero. 
For every fixed t, U(t) gives the total number of claims on (0,t].  
Let us denote by M(t,y) the value of the d.f. of U(t) at y; we can then write: 

 
0

( , ) ( , ( ) )n
n

M t y P U y N t n
∞

=

= ≤ =∑ . (1.18) 

Using relation (3.5) of Chapter 2, the independence assumption of the two 
stochastic processes ( , 1)nX n ≥  and ( , 1)nY n ≥  leads to: 

 0

( ) ( 1) ( )

n=0

( , ) ( ) ( ( ) )

              = ( ( ) ( )) ( ).

n
n

n n n

M t y P U y P N t n

A t A t B y

∞

=

∞
+

= ≤ =

−

∑

∑
 (1.19) 

 
2) The risk process 
It is the stochastic process: 
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 ( ( ) , 0)U t ct t− ≥  (1.20) 
representing the total net outcome of the company up to time t, provided it is still 
alive at this time. 
 
3) The risk reserve process (or the surplus process) 
It represents the stochastic process ( ( ), 0)t tα ≥ , where: 
 ( ) ( ) , 0.t u U t ct tα = − + ≥  (1.21) 
It gives, at time t, the total net asset of the company supposing the company is 
still alive at time t. 
The next two figures give typical trajectories of the N process and the α  process. 
 

 
Figure 1.1: trajectory of N process 

 
1.1.4 The Ruin Problem  
 
We come now to the fundamental ruin problem in risk theory. 
From a strict economic point of view, the lifetime of the insurance company may 
be defined as the stopping time: 
 { }inf : ( ) 0 .T t tα= <  (1.22) 
This is a "strict" point of view, as we do not consider the possibility for the 
company to take out a loan to cover a "small" ruin. 
Clearly, if the event { }: ( ) 0Tω ω ≤ occurs, then the company is ruined before or 
at time t; otherwise the company is still alive at time t. 
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Figure 1.2: trajectory of α  process 

 
We will use the following notation for the probabilities of ruin and non-ruin on 
an infinite time horizon, i.e. on [ )0,∞ : 
 ( ) ( (0) ),u P T uαΨ = < ∞ =  (1.23) 
 ( ) ( (0) ) 1 ( ).u P T u uφ α= = ∞ = = −Ψ  (1.24) 
The knowledge of Ψ  or equivalently of φ  is necessary in order to select values 
for parameters u and for η  to warrant good services for the customers. 
For example, if u is fixed, we can see the probability φ  as a function of the 
security loading η , say: 
 ( , ).uφ η  (1.25) 
If we impose the condition: 
 ( , ) ,uφ η ε>  (1.26) 
for example with ε =0.99999, we can select the minimum value of η  such that 
condition (1.26) is satisfied. 
With the aid of results on random walk, we can now justify theoretically the fact 
that a strictly positive security loading is a necessary condition for not having 
ruin on [ )0,∞  a.s. 
On the time period ( ]1,n nT T− , the liability of the company increases or decreases  
by a net amount given by: 
 , 1.n n nZ Y cX n= − ≥  (1.27) 
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The sequence of i.i.d. r.v. 
 ( , 1)nZ n ≥  (1.28) 
generates a random walk of successive values: 

 
1

.
n

n k
k

S Z
=

=∑  (1.29) 

From relation (1.21), we get: 
 ( )n nT u Sα = −  (1.30) 
since Sn is the risk process value at time Tn. 
Let us now consider the r.v. M defined by relation (17.27) of Chapter 3; from 
relation (1.24), we deduce that: 
 ( ) ( ).u P M uφ = ≤  (1.31) 
From Proposition 17.1 of Chapter 3, we know that the d.f. of M is non-
degenerate iff the random walk drifts toward −∞ , or equivalently iff: 
 ( ) 0.nE Z <  (1.32) 
It is now clear that this last condition is, from relation (1.27), also equivalent to 
the inequality (1.13). 
The case  
 0cβ α− =  (1.33) 
must be treated carefully. 
Indeed, in this case, the random walk generated by the random sequence (1.27) 
oscillates, so that for any positive u, we have: 
 0( : ) 1.nP n S u∃ ∈ > =  (1.34) 
In other words, this result shows that whatever the initial reserve is, the company 
will be ruined with probability 1. This also means that the asymptotic fair game 
leads a.s. to the ruin of the company. 
So, without any loading, the random walk ( , 0)nS n ≥ will either drift toward +∞  
or oscillate. In both cases, we know that a.s. 
 .M = ∞  (1.35) 
It follows that the problem of computing the non-ruin probability function φ  
only arises when inequalities (1.13) or (1.14) are satisfied, and it is necessary to 
particularize some basic assumptions in order to obtain more tractable analytical 
expressions. This is possible in the case of the P/G or Cramer-Lundberg model. 
 
1.2 The P/G Or CRAMER-LUNDBERG Risk Model
 
1.2.1 The Model 
 
To obtain this particular risk model, it suffices to adapt the Andersen model 
explained above in the following manner: we impose that the claim amount 
process is a Poisson process or as in Example 3.1, Chapter 2 that: 
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1 , 0,

( )
0,            0,

xe x
A x

x

λ−⎧ − ≥
= ⎨

<⎩
 (1.36) 

so that, by relation (1.2): 

 1α
λ

= . (1.37) 

Condition (1.13) or (1.32) becomes: 
 .c λβ>  (1.38) 
So, if in general, any Andersen model is defined by two general d.f. A and B on 
0,∞[ ), which, as we already know, justifies the notation G/G model where letter 

G stands for "general", on the other hand, any Cramer-Lundberg model is defined 
by a strictly positive parameter λ , defining the Poisson process of claim arrivals 
and by a general d.f. B on [ )0,∞  for  claim amounts. This also explains the 
notation P/G (P for "Poisson" and G for "general") for this particular model. 
 
1.2.2 The Ruin Probability 
 
Now we will see how it is possible to build specific mathematical treatments to 
obtain simple results concerning the non-ruin probability functionφ . 
From now on, we will suppose that condition (1.38) is satisfied; otherwise, φ is 
identically 0. 
From standard rules of probability, we get, by conditioning with respect to the 
first claim occurrence time, 

 
0 0

( ) ( ) ( ) , 0.
u cttu e u ct y dB y dt uλφ λ φ

∞ +−= + − >∫ ∫  (1.39) 

By the change of variables z=u+ct, we get: 

 
0

( ) ( ) ( ) .
u z z

c c
c

u e e z y dB y dz
c

λ λλφ φ
−∞

= −∫ ∫  (1.40) 

From classical theorems of analysis, it follows from this last expression that φ  is 
derivable and that its derivative can be computed as follows: 

 
0

0

'( ) ' ( ) ( )

( ) ( ).

u z z
c c

u

u u u
c c

u e e z y dB y dz
c

e e z y dB y
c

λ λ

λ λ

λφ φ

λ φ

−∞⎛ ⎞
= −⎜ ⎟
⎝ ⎠
⎛ ⎞

+ − −⎜ ⎟
⎝ ⎠

∫ ∫

∫
 (1.41) 

Using relation (1.40) again, we get: 

 
0

'( ) ( ) ( ) ( ).
u

u u u y dB y
c c
λ λφ φ φ= − −∫  (1.42) 

We will now integrate this last equality term by term on [0,t] to obtain: 
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0 0 0

( ) (0) ( ) ( ) ( ) .
t t

t d y dB y d
c c

ξλ λφ φ φ ξ ξ φ ξ ξ− = − −∫ ∫ ∫  (1.43) 

Using Fubini's theorem related to the permutation of integration for the last term 
of the second member of (1.43), we get: 

 
0 0

( ) (0) ( ) ( ) ( ) .
t t y

t
t d y dB y d

c c
λ λφ φ φ ξ ξ φ ξ ξ− = − −∫ ∫ ∫  (1.44) 

The double integral of the second member can be integrated by parts, with: 

 
0

( ) ( ) ( ( ) ), ( ) ( ).
t y t

y

f y d y d dg y dB yφ ν ν φ ξ ξ
−

= = − =∫ ∫  (1.45) 

This leads to the following result: 

 
0

( ) (0) ( ) ( ) ( ) .
t

t d t y B y dy
c c
λ λφ φ φ ξ ξ φ− = − −∫  (1.46) 

Finally, setting t yξ = −  in the first integral of this last relation, we get: 

 
0

( ) (0) ( )(1 ( ) .
t

t t y B y dy
c
λφ φ φ= + − −∫   (1.47) 

Before solving this integral equation, we have to compute the value of (0)φ . To 
do so, we let t tend toward ∞  in the last relation; it follows that: 

 ( ) (0) ( ) ( )L
c
λφ φ φ∞ = + ∞ ∞  (1.48) 

where: dL(y)=[1-B(y)]dy and so 

 
0

( ) (1 ( )) .L B y dy β
∞

∞ = − =∫  (1.49) 

Now, coming back to the equality (1.48), we can extract the value of ( )φ ∞ : 

 (0)( ) ,
1

c

φφ
λβ

∞ =
−

 (1.50) 

but, by condition (1.38), we have ( )φ ∞ =1 and so the last relation gives the 
desired result: 

 (0) 1 .
c
λβφ = −  (1.51) 

The final form of the integral equation (1.39) is thus: 

 
0

0

( ) 1 ( ) *( ),

1*( ) (1 ( )) .

t

y

t t y dB y
c c

B y B z dz

λβ λβφ φ

β

= − + −

= −

∫

∫
 (1.52) 

We can easily solve this integral equation using the Laplace transform. With the 
same conventions as in Chapter 2, relation (1.52) leads to 
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 1( ) 1 ( ) * ( )s s b s
c s c
λβ λβφ φ⎛ ⎞= − +⎜ ⎟

⎝ ⎠
 (1.53) 

where: 

 1 ( )*( ) .B yb y
β

−
=  (1.54) 

From the algebraic equation (1.53) we can obtain an explicit expression of the 
Laplace transform of the probability of non-ruin φ : 

 

11
( ) .

1 *( )

c ss
b s

c

λβ

φ
λβ

⎛ ⎞−⎜ ⎟
⎝ ⎠=

⎛ ⎞−⎜ ⎟
⎝ ⎠

 (1.55) 

Using assumption (1.38), we get 

 1 *( ) 1 *(0) 1 0, 0,b s b s
c c c
λβ λβ λβ

− > − > − > ∀ >  (1.56) 

so that 

 * ( ) 1, 0.b s s
c
λβ

< ∀ >  (1.57) 

By a series expansion, the new expression of the Laplace transform of φ  is: 

 
0

1( ) 1 *( ) .
n

n
s b s

c s c
λβ λβφ

∞

=

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑  (1.58) 

By inverting this last relation member by member, we get an explicit form of the 
non-ruin probability: 

 ( )

0
( ) 1 *( ) .

n
n

n
u B u

c c
λβ λβφ

∞

=

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑  (1.59) 

If we want to express the probability of ruin at u, we have from equality (1.24): 

 

( )

0

( )

0

( ) 1 *( )) ,

        1 (1 *( )) .

n
n

n

n
n

n

u B u
c c

B u
c c

λβ λβ

λβ λβ

∞

=

∞

=

⎛ ⎞ ⎛ ⎞Ψ = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

∑
 (1.60) 

This result was proved by Janssen (1969a). 
 
Example 1.1 The P/P model or Lundberg's model 
The notation P/P means that we must drastically particularize the choice of the 
d.f. B as a negative exponential one so that: 

 
1

1 , 0,( )
0,            0.

y
e yB y

y

β
−⎧⎪ − ≥= ⎨

⎪ <⎩
 (1.61) 
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As here: 
 *( ) ( )B y B y= , (1.62) 
we deduce that: 

 1*( )
1

b s
sβ

=
+

 (1.63) 

and it suffices to use result (1.55) to get: 

 

11
( ) .

11
1

c ss

c s

λβ

φ
λβ

β

⎛ ⎞−⎜ ⎟
⎝ ⎠=

⎛ ⎞−⎜ ⎟ +⎝ ⎠

 (1.64) 

Taking the inverse Laplace transform for both members of this last relation, we 
find that: 

 
1

( ) 1
u

cu e
c

λ
βλβφ

⎛ ⎞
− −⎜ ⎟
⎝ ⎠= −  (1.65) 

and of course: 

 
1

( )
u

cu e
c

λ
βλβ

⎛ ⎞
− −⎜ ⎟
⎝ ⎠Ψ = . (1.66) 

The existence of such simple explicit formulas is exceptional in risk theory 
because it gives very simple expressions for and φ Ψ . 
Let us also mention that we can write another expression for Ψ ; indeed, we 
know from relation (1.12) that: 
 (1 ).c λβ η= +  (1.67) 
Substituting c given by this expression in relation (1.66) leads to the new 
expression: 

 11( ) .
1

u

u e
η
η β

η

−
+Ψ =

+
 (1.68) 

This gives the surprising result that, providing relation (1.38) is satisfied, that is: 
c λβ> , the ruin probability only depends on η  and β  but not on λ . 
In other words, this result means that if we have two insurance companies having 
for the P/P model respectively the parameters 1 2( , ),  ( , )λ β λ β , both couples 
satisfying inequality (1.38), then these two companies, starting with identical 
equities, have the same ruin probability iff they use the same security loading η  
 So, in this case, from the point of view of ruin theory, the company having the 
largest parameter λ  is not more dangerous than the other provided that both 
companies have the same mean claim amount and security loading. 
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Example 1.2 
1) Let us consider an insurance company having as annual mean of claim 
amounts 2 billions € and 50 000 as mean claim number per year and as initial 
reserve u an amount of 8 000 000 €. 
Using our notation, we see that for the considered company: 

 
50000,

2000000000,  8000000u
λ
λβ
=
= =

 (1.69) 

and so: 
 40000.β =  (1.70) 
From relation (1.68), we get: 

 
200

11(8000000) .
1

e
η
η

η

−
+Ψ =

+
 (1.71) 

Table 1.1 gives some values of this ruin probability as a function of the loading 
factor.  

loading ruin probability 
0.01 0.1366752 
0.03 0.0028661 
0.05 0.0000696 
0.07 0.0000019 
0.10 0.000000011544

Table 1.1 
 
2) Now let us suppose that the loading factor is fixed at 7% and let us see what 
happens if: 
(i)  the initial reserve has successively the following values:  
4 000 000, 2 000 000, 1 000 000, 500 000, 
(ii) with a reserve of 8 000 000, the mean claim amount has as values 25 000 and 
100 000, 
(iii) the annual mean claim number has as values successively 70 000, 20 000, 
still with a reserve of 8 000 000. 
The results are the following: 

(i) 

0.07
1.07 40000

0.0654206
40000

1(2000000) ,
1.07

                       0.9345794

u

u

e

e

− ⋅

−

Ψ =

=

 (1.72) 

and so we get the results in Table 1.2. 
 

reserve Ruin probability
4 000 000 0.0073472 
2 000 000 0.0354835 
1 000 000 0.1821047 
500 000 0. 4125424 

Table 1.2 
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(ii) Here we get: 

 

0.07 8000000
1.07

0.0654206

1(8000000) ,
1,07

                       0.9345794
u

e

e

β

β

− ⋅

−

Ψ =

=

 

and so we get the results given in Table 1.3: 
 

mean claim amount ruin probability 
25 000 0. 00000000075655
150 000 0. 0285312 

Table 1.3 
 
(iii) In case of an annual mean claim number having as values successively       
70 000, 20 000, still with a reserve of 8 000 000, the annual mean of claim 
amounts has the values 2.8 billions and 800 millions. For the annual mean 
incomes, we get respectively 996 billions, 856 000 000. 
Nevertheless, the ruin probability remains equal to 0.0000019. 
 
1.2.3 Risk Management Using Ruin Probability 
 
The explicit result (1.68) easily gives the solution of the three basic problems in 
risk management for an insurance company. 
 
Problem 1 Given the basic data ( , , )λ β η of the company and the initial reserve 
amount u, how are we to measure the risk exposure of the company? 
It suffices to use result (1.68) to compute the ruin probability on [ )0,∞ . 
 
Problem 2 Given the data ( , )λ β  of the company and the initial reserve amount 
u, how are we to measure the loading security so that the ruin probability on 
[ )0,∞  will never exceed a critical value (1 ε− )? 
Using result (1.68) again, we must solve the inequality: 

 11 1
1

u

e
η
η β ε

η

−
+ < −

+
 (1.73) 

or the equality: 

 ln(1 ) ln(1 )
1

uηη ε
η β

− + + = −
+

 (1.74) 
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which can be done using the Newton method. 
 
Problem 3 Given the data ( , )λ β  of the company and the loading security, how 
are we to measure the initial reserve amount u so that the ruin probability on 
[ )0,∞  will never exceed a critical value 1-ε ? 
Using result (1.68) again, we must solve the inequality: 

 11 1
1

u

e
η
η β ε

η

−
+ < −

+
 (1.75) 

or the equality: 

 ln(1 ) ln(1 )
1

uηη ε
η β

− + + = −
+

 (1.76) 

which has as unique solution: 

 1 ln( (1 )).η β η η
η
+

+  (1.77) 

 
1.2.4 Cramer’s estimator 
 
In the preceding section, we find an explicit expression for the ruin probability 
ψ  using result (1.60). To get a more useful result, from the computational point 
of view, the only possibility is to obtain simple and good approximations of the 
function Ψ . 
To do this, we start from the integral equation (1.52) and we express the ruin 
probability Ψ  using relation (1.23). We get 

 
0

( ) (1 *( )) ( ) * ( ).
t

t B t t y dB y
c c
λβ λβ

Ψ = − + Ψ −∫  (1.78) 

From condition (1.38), we have: 

 
0

* ( ) 1dB y
c c
λβ λβ∞

< <∫  (1.79) 

and so it follows that the integral equation (1.78) is not of renewal type; 
nevertheless, it is said to be of defective renewal type. 
To be able to apply results of renewal theory from Chapter 2, we have to get 
around this difficulty; that is why we will pose: 
 ˆ ( ) ( )Rtt e tΨ = Ψ  (1.80) 
where R is a positive constant.  
Consequently, the integral equation (1.78) can now be written in the form 

 
0

ˆ ˆ( ) (1 *( )) ( * ( )).
tRt Rt Rte t B t e e t ydB y

c c
λβ λβ− − −Ψ = − + Ψ −∫  (1.81) 

Multiplying both members of this last equality by eRt, we get: 
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0

ˆ ˆ( ) (1 *( )) ( *( ))
tRt Rtt B t e e t ydB y

c c
λβ λβ −Ψ = − + Ψ −∫ . (1.82) 

This last equation will be of renewal type provided that 

 
0

* ( ) 1,Rye dB y
c
λβ ∞

=∫  (1.83) 

i.e., by relation (1.52), iff the function from [ )0, ,+∞  

 (1 ( )),Ryy e B y
c
λ

−  (1.84) 

is a density function. 
Now using the key renewal theorem (Proposition 4.2 of Chapter 2), we are able 
to prove the following fundamental result. 
 
Proposition 1.1 (Cramer's estimator of ruin theory) 
If: 

(i) 1,
c
λβ

<   (1.85) 

(ii) there exists a positive constant R such that: 

 
0

* ( ) 1Rye dB y
c
λβ ∞

=∫  (1.86) 

and 

 
0

( ) (1 ( )) ,Rym ye B y dy
c
λ ∞

= − < ∞∫   
0

( ) (1 ( )) 1,Rym ye B y dy
c
λ ∞

= − =∫  (1.87) 

then, the following approximation formula is valid: 
 ( ) uu Ce λ−Ψ ≈  (1.88) 
where the constant C has as value: 

 11 ( ) .C Rcm
c
λβ −⎛ ⎞= −⎜ ⎟

⎝ ⎠
 (1.89) 

 
Proof It can be shown that under our assumptions, the function [ )0, +∞ : 
 (1 *( ))Ryy e B y−  (1.90) 
is directly Riemann integrable (see Çinlar (1975b) for the definition)) 
We can thus use the key renewal theorem (see Proposition 4.2, Chapter 2) to 
obtain from the integral equation of renewal type (1.82): 

 
0

1ˆlim ( ) ( )
t

t G x dx
m

∞

→∞
Ψ = ∫  (1.91) 

with 

 ( ) (1 *( ))RxG x e B x
c
λβ

= −  (1.92) 
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and 

 
0

* ( ).Rym e dB y
c
λβ ∞

= ∫  (1.93) 

By integrating both members of relation (1.92), we get with an integration by 
parts for the second member: 

 
0

0

0 0

( ) (1 *( ))

                = (1 *( )) *( ).

Rx

Rx Rx

eG x dx B x d
c R

B x e e dB x
cR cR

λβ

λβ λβ

∞
∞

∞∞

= −

− +

∫ ∫

∫
 (1.94) 

By the direct Riemann integrability of function (1.90), the bracket has value zero 
at +∞ . Moreover, using assumption (1.86) to deal with the second term of the 
second member of this last equality, we get: 

 
0

( ) ,

1                1 .

cG x dx
cR cR

R c

λβ λβ
λβ

λβ

∞
= − +

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∫
 (1.95) 

Using relations (1.80), (1.91) and (1.95) finally gives: 

 
1lim ( ) 1 ,

                     ,

Ru

u
u e

mR c
C

λβ
→∞

⎛ ⎞Ψ = −⎜ ⎟
⎝ ⎠

=
 (1.96) 

and so the theorem is proved.   
 
Before giving the next result, we must first write the basic assumption (1.86) of 
Proposition 1.1 under another form. To do this transformation, let us begin to 
express the integral 

 
0 0

1*( ) (1 ( )) ;Ry Rye dB y e B y dy
β

∞ ∞
= −∫ ∫  (1.97) 

using an integration by parts for the second member we obtain: 

 
0 0

1 1*( ) ( ).Ry Rye dB y e dB y
R Rβ β

∞ ∞
= − +∫ ∫  (1.98) 

Thus, assumption (1.86) becomes: 

 
0

1 1 ( )Ryc e dB y
R Rλβ β β

∞
= − + ∫  (1.99) 

or equivalently: 

 
0

( ).RyRc e dB yλ λ
∞

+ = ∫  (1.100) 

This new form of the R-equation (1.100) is called the Cramer-Lundberg 
equation. 
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This equation clearly shows that the existence of a finite positive value of R 
implies the existence of the generating function of the d. f. B, at least on [0,R], 
and consequently that this d.f. has moments of every order. 
The Cramer-Lundberg equation has a simple geometric interpretation as the 
value of R is given by the strictly positive value of the intersection point of the 

curve representing the function 
0

( )RyR ye dB yλ
∞

∫  and the straight line d whose 

equation is given by the first member of equation (1.100). 
It follows that the slope of the tangent t at the curve C at the origin has the value 

.λβ  From relation (1.85), this value is strictly less than the slope c of d. 
Moreover, it is easily seen that the function defined by the second member of the 
Cramer-Lundberg equation is a strictly increasing convex function. This implies 
that this equation has only one strictly positive solution R. 
It can be shown that the value R is strictly less than 1 (see for example Gerber 
(1979)). 
The next result gives an interesting upper bound of the ruin probability. 
 
Corollary 1.1 Under the assumptions of Proposition 1.1, the following inequality 
is true for all positive u: 
 ( ) .Ruu e−Ψ ≤  (1.101) 
 
Proof Using the r.v. defined by: 

 
0

0

( ),

, 0,1,...,

0,

n n n n

n

n n
k

Z Z cX Y

S Z n

S
=

= − = −

= =

=

∑  (1.102) 

we can write for, ( )n uΨ , the probability of being ruined by one of the first n 
claims (n=1,2,...): 
 { }0( ) (inf ,..., )n nu P S S uΨ = ≤ − . (1.103) 

Of course, since 0 0S =  we can extend the definition of ( )n uΨ  for negative 
values of u so that: 
 ( ) 1, 0.n u uΨ = <  (1.104) 
Since 
 ( ) lim ( )nn

u u
→∞

Ψ = Ψ , (1.105) 

and since the ruin event can only occur upon the arrival of a claim, it suffices to 
show that for all real value of u: 
 ( ) , 0,1,...Ru

n u e n−Ψ ≤ = . (1.106)  
For n=0, the result is obvious since: 
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 0

0, 0,
( )

1, 0.
u

u
u
≥⎧

Ψ = ⎨ ≤⎩
 (1.107) 

By induction, we get successively: 

 

1 0 0

( )

0 0

( )

0 0

0

( ) ( ) ( )

            ( )

            ( )

            ( ).

t
n n

t R u ct y

Ru Rc t Ry

Ru Ry

u e dt u ct y dB y dt

e dt e dB y dt

e e dt e dB y

e e dB y
Rc

λ

λ

λ

λ

λ

λ

λ
λ

∞ ∞−
+

∞ ∞− − + −

∞ ∞− − + −

∞− −

Ψ = Ψ + −

≤

≤

≤
+

∫ ∫
∫ ∫

∫ ∫

∫

 (1.108) 

It suffices now to use the Cramer-Lundberg equation (1.100) to obtain the 
desired result (1.101).   
 
This last corollary shows the fundamental importance of inequality (1.101). The 
knowledge of R gives to the insurer the possibility to adopt an informed, careful 
attitude and it is well known that carefulness is one of the pillars of insurance. 
The price to pay is just the resolution of the Cramer-Lundberg equation but that 
is not a problem if we use the numerical Newton method. 
However, the next two results show how to avoid this resolution in order to get 
other upper bounds of the ruin probability. 
 
Corollary 1.2 
(i) Under the assumptions of Proposition 1.1, and if moreover, the variance 2σ  
related to the d.f. B, is supposed to be finite, then: 

 2 2

2( )
( )

cR λβ
λ β σ

−
<

+
. (1.109) 

(ii) If moreover the claim amount is, a.s., a bounded r.v. with M as upperbound, 
then: 

 1 ln .c R
M λβ

<  (1.110) 

 
Proof 
(i) This result is easily obtained by replacing Rye  in the equation (1.100) by its 
development into a second-order MacLaurin series. 
 (ii)  The function Ryy e  being convex on [ )0,∞ , we get from the convexity 
inequality that: 

 0
1 ,  0 .

MRx RM Rxx x xe e x M e x
M M M

⎛ ⎞≤ + − ≤ ≤ ≤⎜ ⎟
⎝ ⎠ ∫ . (1.111) 

Coming back to the Cramer Lundberg equation (1.100), we obtain: 
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0 0

( ) ( ),
M MRMRc xe dB x xdB x

M M
λ λλ λ+ ≤ + −∫ ∫  (1.112) 

so that: 

 .RMRc e
M M
λβ λβλ λ+ ≤ + −  (1.113) 

It follows that: 

 1,
RMc e
RMλβ

−
≤  (1.114) 

and consequently:  

 ,RMc e
λβ

≤  (1.115) 

a result equivalent to the inequality (1.110) to be proved.  
So, under the assumption that there exists a constant M such that B(M)=1, then 
we have: 

 2 2

1 2( )ln .
( )

c cR
M

λβ
λβ λ β σ

−
< <

+
 (1.116) 

In particular, by Corollary 1.1, we have: 

 ( ) ln .
t

M ct e
λβ

−
Ψ <  (1.117) 

This last inequality gives a useful upper bound of the ruin probability without 
having to solve the Cramer-Lundberg equation. of course, as M tends toward 
+∞ , we get the trivial bound 1. 
 
Example 1.3 Let us suppose that the claim amount distribution is normal 

2( , ), 0β σ β >  and with μ  large enough so that the truncated normal is well 
approximated by the entire normal curve. 
From result (5.13) of Chapter 1, the Cramer-Lundberg equation (1.100) becomes: 

 
2 2

2 .
RR

Rc e
σβ

λ λ
+

+ =  (1.118) 
Using a Taylor development of order 1, we get: 

 22 cR λβ
σ
−

≈ . (1.119) 

 
Example 1.4 (The adjustment coefficient for the P/P risk model) 
In this case, we know that: 

 1 1( ) ,0 .
1B s s

s
ϕ

β β
= ≤ <

−
 (1.120) 

For this special case, the Cramer-Lundberg (1.100) equation takes the form: 
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 .
1

Rc
R
λλ
β

+ =
−

 (1.121) 

Therefore, the value of the adjustment coefficient is 

 
1

R η β
η

=
+

 (1.122) 

where we know that: 

 1 .
c
λβη = −  (1.123) 

This last result gives the following Cramer-Lundberg inequality (1.100) for the 
P/P model: 

 ( ) exp
1

uu ηψ
η β

⎛ ⎞
≤ −⎜ ⎟+⎝ ⎠

. (1.124) 

Comparing with the exact value of Ψ  given by relation (1.68), we see that this 
majoration gives the overestimation: 

 exp .
1 1

uη η
η η β

⎛ ⎞
−⎜ ⎟+ +⎝ ⎠

 (1.125) 

 
Remark 1.1 
(i) Economic interpretation of the adjustment coefficient  
Using the exponential utility principle to cover the total outcome U(t) on the time 
interval [ ]0,t , we can write: 
 ( ) ( )( )aU t aP tE e e=  (1.126) 
where P(t) represents the mean global premium  for the insurance company. 
To find the value of the parameter a satisfying this last relation, let us first recall 
that, from relation (1.19), we have: 

 ( )

0

( )( ( ) ) ( )
!

n
t n

n

tP U t y e B y
n

λ λ∞
−

=

≤ =∑ . (1.127) 

It follows that the generating function of the r.v. U(t) is given by: 

 
( )

0
(1 ( ))

( )( ) ( )
!

               .B

n
sU t t n

B
n

t s

tE e e s
n

e

λ

λ ϕ

λ ρ
∞

−

=

− −

=

=

∑  (1.128) 

where the function Bρ  represents the generating function associated with the r.v. 
Yn. 
Consequently, the equality (1.126) is equivalent to: 
 (1 ( )) ( ).Bt a aP tλ ρ− − =  (1.129) 
We want to have a risk model for which the ratio P(t)/t is independent of t and 
has as value c. Therefore, we must have from relation (1.129): 
 (1 ( ))Bt a actλ ρ− − = , (1.130) 
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which is the Cramer Lundberg equation for the unknown parameter a, so that 
a=R. 
This result shows that if the choice is a linear income P(t) =ct, then a, the relative 
marginal utility of the policyholder, is the constant R. 
(ii) The adjustment coefficient and martingale theory 
It is also possible to show that the adjustment coefficient R is the only value for a 
such that the process ( )( , 0)aU te t− ≥ is a martingale with respect to the filtration  

 
( , 0),

( ( ), )
t

t

t
U s s tσ

ℑ ≥
ℑ = ≤

 (1.131) 

and so, in particular: 
 ( )( ) .RU t RuE e e− −=  (1.132) 
 
2 DIFFUSION MODELS FOR RISK THEORY AND RUIN 
PROBABILITY 
 
There exist other risk models than those of type G/G. Models using semi-Markov 
processes will be fully developed later. 
In this section, we will briefly present two models using simple diffusion 
processes (see Chapter 1). 
 
2.1 The Simple Diffusion Risk Model  
 
In this model (Cox and Miller (1965) and Gerber(1979)), we will immediately 
model the risk reserve or the surplus process with a particular continuous time 
stochastic process. 
This means that the α  process satisfies the very simple stochastic differential 
equation: 

 
( ),

(0) .
d dt dW t

u
α μ σ

α
= +
=

 (2.1) 

The process ( ( ), 0)W W t t= ≥ is a standard Brownian motion defined on a 
complete probability space ( , , )PΩ ℑ  and of course, we suppose that: 
 0, 0.μ σ> >  (2.2) 
As in continuous time stochastic finance (see Merton(1999)), the first parameter 
is called the trend and the second one the volatility. 
This model gives a very simple expression for the α  process: 
 ( ) ( ), 0.t t W t tα μ σ= + ≥  (2.3) 
With such a simple model, it is possible to compute the exact value of the ruin 
probability (see Cox and Miller (1965)) on a finite time horizon [0,t], that is  
 ( , ) ( (0) )u t P T t uψ α= < = , (2.4) 
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with T defined by relation (1.22) and ( , )u tψ  by the following expression: 

 2
2

( , ) 1 ,
uu t u tu t e

t t

μ
σμ μψ φ φ

σ σ

−+ − +⎛ ⎞ ⎛ ⎞
= − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (2.5) 

where here, to avoid confusion with the notation for the non-ruin probability,φ  
represents the  d.f. of a reduced normal r.v. 
Let us point out that, letting t →∞ , we get the following asymptotic result: 

 
2

2

, 0,( ) lim ( , )
1, 0.

u

t
eu u t

μ
σ μψ ψ
μ

−

→∞

⎧⎪ >= = ⎨
⎪ <⎩

 (2.6) 

Remark 2.1 
a) From the result (2.5), we deduce that, for all positive u: 
 

0
lim ( , ) 0
t

u tψ
→

= . (2.7) 

This is a simple consequence of the a.s. global continuity property of the 
trajectories of the α  process. That was not the case for the G/G risk model! 
b) We also have: 
 (0, ) 1, 0t tψ = >  (2.8) 
and so: 
 (0) 1ψ = , (2.9) 
contrary to the result (1.116) for the Cramer-Lundberg or G/G risk model. 
c) The asymptotic result (2.6) gives interesting information concerning the 
strategic point of view of the insurance company. 
Indeed, in this formula (2.6), the basic parameter is 22 /μ σ . 
It gives a good measure of the two models of action available to the manager of 
the company: increase or decrease the premiums, i.e. act on the trend μ , or 
increase or decrease the risk by the mix of portfolio selection, i.e. act on the 
volatility .σ  
 
2.2 The ALM-like Risk Model (Janssen(1991),(1993)) 
 
In finance, it is usual to model the evaluation of the assets and the liabilities of a 
bank or of an insurance company with the use of stochastic processes for both 
parts of the balance sheet. This leads to useful models used in the theory and 
practice of asset liability management (in short ALM (Janssen (1991), (1993)). 
We will now briefly present this type of model for an insurance company. 
Let us represent by  
 ( ( ), 0), ( ( ), 0)A A t t B B t t= ≥ = ≥  (2.10) 
successively the stochastic processes of the asset and of the liability under the 
assumption that they satisfy the very simple stochastic differential system  
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( ) ( ),
( ) ( ),

(0) , (0) 0

A A A

B B B

dA t dt dW t
dB t dt dW t
A u B

μ σ
μ σ

= +
= +
= =

 (2.11) 

and where: 
(i) , , , ,A B A B uμ μ σ σ  are strictly positive, 
(ii) ( ( ), 0), ( ( ), 0)A A B BW W t t W W t t= ≥ = ≥  are two independent standard 
Brownian motions. 
Clearly, the stochastic differential problem (2.11), has the following solution: 

 
( ) ( ),
( ) ( ).

A A A

B B B

A t u t W t
B t t W t

μ σ
μ σ

= + +
= +

 (2.12) 

As above, we also have: 

 
( , ) ( (0) ),

( ) ( (0) ) lim ( , ).
t

u t P T t A u

u P T A u u t

ψ

ψ ψ
→∞

= ≤ =

= ≤ ∞ = =
 (2.13) 

From (2.12), we can write that: 
 ( ) ( ) ( ) ( ).A A A B B BA t B t u t W t t W tμ σ μ σ− = + + − −  (2.14) 
The independence assumption between the two Brownian processes implies that 
the process 
 ( ( ) ( ), 0)A BAW t BW t t− ≥  (2.15) 
is probabilistically equivalent to the process 

 ( )2 2 ( ), 0A BW t tσ σ+ ≥  (2.16) 

where the process W is a standard Brownian motion. 
Let us now introduce two new parameters defined as: 
 2 2, ,A B A Bμ μ μ σ σ σ= − = +  (2.17) 
so that, using relation (2.14), we get 
 ( ) ( ) ( ).A t B t t W tμ σ− = +  (2.18) 
Thus, we see that, with the change of parameters (2.17), the process ( )A B−  is 
modelled exactly like the simple diffusion risk model given by relation (2.3). 
Consequently, all the results of subsection 2.1 are valid for the ALM-like model, 
particularly the results (2.5), (2.6) giving here as results: 

 
2 2
2

( )

2 2 2 2

( ) ( )( , ) 1 ,
( ) ( )

A B
u

A B A B

A B A B

u t u tu t e
t t

μ
σ σμ μ μ μψ φ φ

σ σ σ σ

−
+

⎛ ⎞ ⎛ ⎞+ − − + −⎜ ⎟ ⎜ ⎟= − +
⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 (2.19) 

 
2 22

, ,( ) lim ( , )
1             , .

A B

A B
u

A B
t

A B

eu u t
μ μ
σ σ μ μψ ψ

μ μ

−
−

+

→∞

⎧⎪ >= = ⎨
⎪ <⎩

 (2.20) 
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Remark 2.2 
a) In addition to Remark 2.1, let us say that, with the ALM-like risk model, the 
manager has more flexibility to measure the influence of strategic changes. This 
is due to the fact that there are four parameters with two of them, ,A Aμ σ only for 
the asset part and the last two, ,B Bμ σ , only for the liability part. 
b) For the ALM-like risk model, the basic parameter R becomes: 

 2 22 A B

A B

R μ μ
σ σ

−
=

+
. (2.21) 

 
It gives the possibility to correct a bad change, for example in the asset part with 
an action on the liability part or vice-versa, and to introduce hedging strategies 
for insurance companies (see Janssen, Bergendhäl (1999)). 
 
2.3 Comparison Of ALM-Like And Cramer-Lundberg Risk 
Models 
 
It is interesting to see how "to adjust" an ALM risk model to a P/G or Cramer- 
Lundberg model. 
To do this, let us begin to consider a P/G model with as basic parameters , ,λ β η . 
From result (1.127), we know that the d.f. of U(t), the total claim amounts up to 
time t, is given by 

 ( )

0

( )( ( ) ) ( )
!

n
t n

n

tP U t y e B y
n

λ λ∞
−

=

≤ =∑ . (2.22) 

From this expression, it results that: 

 
0

( )( ( )) .
!

n
t

n

tE U t e n t
n

λ λ β λβ
∞

−

=

= =∑  (2.23) 

Using the second Wald’s identity (Chapter 1, relation (6.59)), we also have 

 

2
1 1

2 2

2

var( ( )) var( ) ( ( )) ( ( )) var( ( ))

             
              = ,

U t Y E N t E Y N t

t t
t

λσ λβ
α λ

= +

= +  (2.24) 

2σ  and 2α  being respectively the variance and the centred moment of order 2 
related to the d.f. B. 
Let us note respectively by ,CL ALMα α the risk reserve processes related to the 
Cramer-Lundberg model and the ALM risk model. From relation (2.23), it 
follows that: 

 
( ( )) ( ( ))

                .
CL CLE t E u ct U t

u ct t
α

λβ
= + −

= + −
 (2.25) 

For the variance, we obtain: 
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2

var( ( )) var( ( ))
                .

CL CLt U t
t

α
λα
=

=
 (2.26) 

For the ALM risk model, we have: 
 ( ) ( ) ( ),ALM t u A t B tα = + −  (2.27) 
and consequently: 

 2 2

( ( )) ( ) ,

var( ( )) ( ) .
ALM A B

ALM A B

E t u t

t t

α μ μ

α σ σ

= + −

= +
 (2.28) 

Remembering that (1 ),c λβ η= +  the method of moments for the adjustment of 
these two models gives, with relations (2.25), (2.26) and (2.28), the following 
conditions: 

 2 2
2

,

.
A B

A B

λβη μ μ

λα σ σ

= −

= +
 (2.29) 

The key parameter (2.21) is given by: 

 2 2
2

2 2 .A B

A B

R μ μ βη
σ σ α

−
= =

+
 (2.30) 

From result (2.20), we can now propose an approximation value for the ruin 
probability ( )CL uψ  which is given by: 

 
2

( ) exp 2CL u uβηψ
α

⎛ ⎞
−⎜ ⎟
⎝ ⎠

. (2.31) 

Of course, this approximation will be reliable only if the ALM risk model fits 
well the G/P considered model.  

Substituting the value of c λβη
λβ
−

= in this last result, we get: 

 
2

( ) exp 2CL
cu uλβψ
λα

⎛ ⎞−
−⎜ ⎟
⎝ ⎠

. (2.32) 

We see that the approximation (2.31) is equivalent to the approximation using 
inequality (1.109), showing so that the approximation with the ALM-like model 
gives a lower bound of ψ . 
 
2.4 The Second ALM-Like Risk model 
 
In the first ALM-like model, it is possible to have negative values for the asset 
and liability values. To avoid this eventuality, we will start with a new model 
called the second ALM-like Risk model or model ALM II based on the following 
stochastic differential equations under the same assumptions as for the first 
ALM-like model, called now ALM I but with dependence between the 
considered Brownian motions. 
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  ' ' ,A A A AdA A dt A dW A dZμ σ β= + +  (2.33) 
  ' ' ,B B B BdB B dt B dW B dZμ σ β= + +  (2.34) 
where 
 (i) W=(W(t), t ≥0) is a standard Brownian motion, 
 (ii) ' '' ( ( ), ( ), 0)A BZ Z t Z t t= ≥  is a two-dimensional standard Brownian motion with 
as covariance matrix: 

  
1

, 1,
1
ρ

ρ
ρ
⎡ ⎤

= ≤⎢ ⎥
⎣ ⎦

M  (2.35) 

 (iii) the processes W and 'Z  are independent, 
 (iv) 0 0 0 0(0) , (0) , ,A A B B A B= = >   (2.36) 
 (v) μA, μB, σA' , σB'  are non-negative parameters. 
 Without loss of generality, the model (2.33), (2.34) can be replaced by the 
following one: 

  
,
,

A A A

B B B

dA A dt A dZ
dB B dt A dZ

μ σ
μ σ

= +
= +

 (2.37) 

where 

 
2 '2 2

2 '2 2

,

,
A A A

B B B

σ σ β

σ σ β

= +

= +
 (2.38) 

,  A BZ Z  being two standard Brownian motions with M as correlation coefficient. 
With the result (4.20) of Chapter 5, we get: 

  0

0

( ) exp( ( ))
( )

AA t t W t
B t B

μ σ= +  (2.39) 

with 

  0

0

( ) exp( ( ))
( )

AA t t W t
B t B

μ σ= + , (2.40) 

  2 21 ( ),
2A B A Bμ μ μ σ σ= − − −  (2.41) 

  2 2 2 2 .A B A Bσ σ σ ρσ σ= + −  (2.42) 
Let us remark that, theoretically, the risk component disappears when 

, 1A Bσ σ ρ= = . Of course, this case never occurs in practice but it means that the 
management of the company must tend toward this result if they want to 
minimize the risk. 
As before we can study the lifetime of the company T, here defined as the first 
value of t such that A(t) < B(t), or equivalently  such that the process 

 ( )ln , 0
( )

A t t
B t

⎛ ⎞
≥⎜ ⎟

⎝ ⎠
 (2.43) 
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hits −∞,0( ) . 
We can thus write: 
 

  0

0

inf{ ( ) },

ln .

T t t W t a
Aa
B

μ σ= − − >

=
 (2.44) 

Using the result of section 2.1, we get: 

  
22

1, 0,
( )

, 0.
aP T

e
μ
σ

μ

μ
−

≤⎧⎪< ∞ = ⎨
⎪ >⎩

 (2.45) 

We can also get results for the following probability: 

  
( , ) ( , ( ) ), ,

( ) ( ).

P x t P T t M t x x a

M t t W tμ σ

= > ≤ <

= − −
 (2.46) 

We can also write: 

  ( )( , ) ( , ( ) ), ), .
( )

a x A tP x t P T t e M t x x x a
B t

−= > < ≤ < <  (2.47) 

Cox and Miller (1965) proved that 

  ( , ) ( , )
x

P x t p y t dy
−∞

= ∫ , (2.48) 

  
2 2

2 2 2

1 ( ) 2 ( 2 )( , ) exp
2 22

y t a y a tp y t
t tt
μ μ μ

σ σ σσ π
⎡ ⎤+ − +

= − −⎢ ⎥
⎣ ⎦

 (2.49) 

and by integration: 

  22 2( , )
ax t x a tP x t e

t t

μ
σμ μφ φ

σ σ

−+ − +⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. (2.50) 

Here, the non-ruin probability ( , )a tφ on [0,t] is given by: 
  ( , ) ( , )a t P a tφ =  (2.51) 
and so 

  22
( , )

aa t a ta t e
t t

μ
σμ μφ φ φ

σ σ

−+ − +⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (2.52) 

for which we get result (2.44), letting t →∞ . 
When the ruin is certain on an infinite horizon, that is iff 0μ ≤ , T has the 
following density: 

  
2

2
( )

2
3

( ) ,
2

a t
t

T
af t e

t

μ
σ

σ π

+
−

=  (2.53) 

called an inverse Gaussian distribution for which it can be proved that 
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2

3
( ) , var( ) .a aE T T σ

μ μ
= =  (2.54) 

 
Remark 2.3 
(i)  The more negative the correlation coefficient is, the riskier the situation is for 
the company.  
(ii) As a function of the correlation coefficient, extreme possibilities are: 
1)  "maximum"risk ( 1)ρ = −  

  
2

2( ) ( ) .
2 A B A B
σμ μ μ σ σ+ = + + +  (2.55) 

 2)  "minimum" risk ( ρ  = 1) 

 
2

2( ) ( ) ,
2 A B A B
σμ μ μ σ σ+ = − + −  (2.56) 

and if moreover the asset and liabilities volatilities are identical, we have  
for 1:ρ = −  

  
2

2( ) 2
2 A B A
σμ μ μ σ+ = − +  (2.57) 

and for ρ =1 

  
2

2 A B
σμ μ μ+ = − . (2.58) 

(iii) As the r.v. A(t)A0/B(t)B0 has a log-normal distribution 2( , )tμ σ , we have: 

  

2

2 2

20

0

2
20

0

( ) ,
( )

( )var ( 1).
( )

t

t t t

AA tE e
B t B

AA t e e e
B t B

σμ

μ σ σ

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠⎛ ⎞
=⎜ ⎟

⎝ ⎠

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

 (2.59) 

 
These results confirm a well-known fact for investors: the larger the risk is, the 
larger the expectation of profit is too.  
On the other hand, in all cases, the most dangerous situation happens when 

0,μ ≤ that is when  

  2 21( ) ( ).
2A B A Bμ μ σ σ− ≤ −  (2.60) 

In this case, the manager must absolutely diminish this excess of risk with an 
increase of A Bμ μ−  and a lowering of the volatility of the assets together with an 
increase of the volatility of the liabilities. 
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3 SEMI- MARKOV RISK MODELS 
 
In this paragraph, we will give a complete presentation of the so-called 
homogeneous semi-Markov risk model (in short SMRM) first introduced by 
Miller (1962) and fully developed by Janssen (1969b, 1970, 1977) and later 
many other authors. 
We will also develop special cases of interest which bring more tractable results. 
 
3.1 The Semi-Markov Risk Model (or SMRM) 
 
As we already know from section 1 of this chapter, any risk model is based on 
three “basic” processes: 
 
(i)   the claim arrival process, 
(ii)  the claim amount process, 
(iii) the premium income. 
 
In general, the first two processes are stochastic processes and the last one 
deterministic. 
These processes are defined on a complete probability space ( ), , PΩ ℑ . 
 
3.1.1 The general SMR Model 
 
In the SMRM, the first idea was to introduce m possible types of claims 
belonging to the set 
 { }1,...,I m=  (3.1) 
and later (see Janssen and Reinhard (1982)) this set was considered as an 
environment parameter and in both cases as having influences on the three basic 
processes given above. 
Let ( ) ( ), 1 , , 1n nX n Y n≥ ≥  represent respectively the sequence of interarrival 
times between two successive claims and the sequence of successive claim 
amounts. The process ( ), 1nJ n ≥  will represent the successive type of claims or 
environment states. 
The basic assumption to get an SMRM is that: 
 

1
( , , ( , , ,), 1,..., 1) ( , )

nn n n k k k J jP J j X x Y y J X Y k n Q x y
−

= ≤ ≤ = − =  (3.2) 
with 
 0 0 0 0, 0, . .J j X Y a s= = =  (3.3) 
This assumption means that the three-dimensional process (( , , ), 0)n n nJ X Y n ≥  is 
what is called a two-dimensional (J-X)-process of kernel Q, having the following 
properties: 
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(i)  all the elements ijQ  of Q are mass functions in two dimensions, null for x or y 
negative, 
(ii) the following limits exist: 

 
,

1

lim ( , ) , , ,

1, .

ij ijx y

m

ij
j

Q x y p i j I

p i I

→∞ →∞

=

= ∈

= ∈∑
 (3.4) 

Every such matrix Q is called a two-dimensional semi-Markov kernel and the 
corresponding (J-X-Y) process a two-dimensional J-X process or a two-
dimensional semi-Markov chain. 
From a straightforward extension of the basic results of Chapter 3, section 2, we 
get the following results: 
(i)  the process of successive claims ( ), 0nJ n ≥  is a homogeneous Markov chain 

with I as state space and with ijp⎡ ⎤= ⎣ ⎦P  as transition matrix, 

(ii) the processes (( , ), 0),(( , ), 0)n n n nJ X n J Y n≥ ≥  are two SMP of kernels 
,A BQ Q where for all i and j of I: 

 ( ) ( , ), ( ) ( , ),A B
ij ij ij ijQ x Q x Q y Q y= +∞ = +∞  (3.5) 

(iii) given the r.v. , 0nJ n ≥  the two-dimensional r.v. ( , ), 1n nX Y n ≥  are 
conditionally independent and we have: 

 
0 2 1

1 1

( , ) ( , ,..., , , )

( , ) / , 0,
             

( ) ( ), 0.

ij n n n n n

ij ij ij

ij

F x y P X x Y y J J J i J j

Q x y p p
U x U y p

− −= ≤ ≤ = =

>⎧⎪= ⎨ =⎪⎩

 (3.6) 

(iv) From this last property, we see that given the r.v. , 0nJ n ≥ , the r.v. 
( , 1)nX n ≥ are conditionally dependent and similarly for the r.v. ( , 1)nY n ≥  and 
moreover: 

 0 2 1

0 2 1

( ) ( , ,..., , , ) ( , ),

( ) ( , ,..., , , ) ( , ).

A
ij n n n n ij

B
ij n n n n ij

F x P X x J J J i J j F x

F y P Y y J J J i J j F y
− −

− −

= ≤ = = = +∞

= ≤ = = = +∞
 (3.7) 

Suppressing the conditioning relative to nJ , we get 

 

0 2 1

0 2 1

0 2 1

( , ) ( , ,..., , ) ( , ),

( ) ( , ,..., , ) ( , ),

( ) ( , ,..., , ) ( , ).

i n n n n ij ij
j

A
i n n n i

B
i n n n i

H x y P X x Y x J J J i p F x y

H x P X x J J J i H x

H y P Y y J J J i H y

− −

− −

− −

= ≤ ≤ = =

= ≤ = = +∞

= ≤ = = +∞

∑
 (3.8) 

Now, we can introduce the means associated with the different conditional d.f. 
defined above and we adopt the following notation: 
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0 0

0 0
1 1

( ), ( ),

( ) , ( ) .

A B
ij ij ij ij

m m
A A B B

i i ij ij j i ij ij
j j

a xd F x b yd F y

xd H x p a yd H y p bη η

∞ ∞

∞ ∞

= =

= =

⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∫ ∫

∑ ∑∫ ∫
 (3.9) 

Now, we can first introduce the process  

 
0

( , 1),
0

nT n
T

≥
=

 (3.10) 

defined as 

 
1

, 1
n

n k
k

T X n
=

= ≥∑ , (3.11) 

representing the successive claim time arrivals and secondly the process 

 
0

( , 1),
0

nU n
U

≥
=

 (3.12) 

defined as 

 
1

, 1
n

n k
k

U Y n
=

= ≥∑ , (3.13) 

representing the successive total claim amount just after the arrivals of the 
successive claims. 
For the joint distribution of the process ( , , , 0)n n nJ T U n ≥ , we get: 

 

( )
0

(0)
0 0

(1)

( ) ( 1)

1

( , , ) ( , ),

( , ) ( ) ( ),

( , ) ( , ),

( , ) ( ', ') ( ', '), 1.

n
n n n ij

ij ij

ij ij

nx yn n
ij ij

k

P J j T t U y J i Q x y

Q x y U x U y

Q x y Q x y

Q x y Q x x y y Q dx dy n

δ

−

−∞ −∞
=

= ≤ ≤ = =

=

=

= − − >∑∫ ∫

 (3.14) 

Of course, for processes (( , ), 0),(( , ), 0)n n n nJ T n J U n≥ ≥ , both MRP, we have: 

 
( )

0

( )
0

( , ) ( ),

( , ) ( ).

A n
n n ij

B n
n n ij

P J j T t J i Q t

P J j U y J i Q y

= ≤ = =

= ≤ = =
 (3.15) 

 
Remark 3.1 By analogy with the basic definitions for SMP given in Chapter 3, 
section 2 (Definition 2.1), the three-dimensional process (( , , ), 0)n n nJ T U n ≥ is 
called a two- dimensional MRP of kernel Q. 
If Q is an extended SM matrix in two dimensions, this process is called a two- 
dimensional MRW or extended SMC. 
 
We finish this section with the following definition. 
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Definition 3.1 The sequences ( , 1),( , 1)n nX n Y n≥ ≥  are conditionally 
independent given the sequence ( , 0)nJ n ≥ iff 
 ( , ) ( ) ( ), , , , .A B

ij ij ijF x y F x F y x y R i j I= ∀ ∈ ∀ ∈  (3.16) 
 
From the results given above in this subsection, we also have: 

 
(3.16) ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ).

A B A B
ij ij ij ij ij ij

A B
ij ij ij ij

Q x y F x Q y Q x y Q x F y

Q x y p F x F y

⇔ = ⇔ =

⇔ =
 (3.17) 

This assumption seems quite reasonable in risk theory and moreover, it may be 
useful to consider the following particular case: 

 
( ) ( ), , , 0,

( ) ( ), , , 0.

A A
ij j

B B
ij j

F x F x i j I x

F y F y i j I y

= ∈ ≥

= ∈ ≥
 (3.18) 

The first type of condition (3.18) means that the d.f. of the interarrival time 
between two consecutive claims uniquely depends upon the type of the future 
claim and the second one that the d.f. of a claim amount uniquely depends upon 
the type of this claim and not on the type of the preceding one. 
 
3.1.2 The Counting Claim Process 
 
Still using notation and concepts of Chapter 3, section 5, let us introduce the m+1 
counting processes associated with the SMP of claim arrivals of kernel AQ : 
 ( ) ( )( ), 0 , 1,..., , ( ), 0 ,A A

jN t t j m N t t≥ = ≥  (3.19) 

so that here, ( )A
jN t  represents the total number of claims of type i occurring on 

( ]0,t  and ( )AN t  represents the total number of claims occurring on ( ]0,t . 
From now on, we will suppose that the MRP of kernel AQ  is ergodic with 

1( ,..., )mπ π π=  as a unique stationary distribution related to P. 
For 0( ) ( ( ) )A

ij jR t E N t J i= = , we know from relations (6.15), (9.1) and (9.4) of 
Chapter 3  that 

 

( )

0
( ) ( ), , ,

( ) 1lim , , ,

1 , .

A n
ij ij

n

ij
At

jj

A A
jj k k

kj

R t Q t i j I

R t
i j I

t

j I

μ

μ π η
π

∞

=

→∞

= ∈

= ∈

= ∈

∑

∑

 (3.20) 

From now on, we will drop the index A for the counting variables related to the 
claim arrivals. 
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For the joint distribution of ( )( ) ( )( ), ,N t N tN t J T , using the semi-Markov property, 

we successively get: 

 

( )
( )
( )
( )

( ) ( ) 0

0

1 0

1 0

( )

0

( ) , ,

( ) , , ,0

, ,

, ,

(1 ( )) ( ).

N t N t

n n

n n n n

n n n

t h A A n
j ij

P N t n J j T t h J i

P N t n J j T t h J i h t

P T t T J j T t h J i

P T t h T t J j J i

H t z d Q z

+

+

−

= = ≤ − =

= = = ≤ − = ≤ ≤

= ≤ < = ≤ − =

= ≤ − > = =

= − −∫

 (3.21) 

For h=0, we obtain: 

 ( ) ( )
( ) 0 0

( ) , (1 ( )) ( )
t A A n

N t j ijP N t n J j J i H t z d Q z= = = = − −∫  (3.22) 

and moreover, summing over j, we get: 

 

( ) ( )
0 0

1

( ) ( )

0
1 1 1

( ) ( 1)

1 1

( ) (1 ( )) ( )

                               ( ) ( )) ( )

                               ( ) ( ).

m t A A n
j ij

j

m m mtA n A A n
ij jk ij

j j k

m m
A n A n

ij ij
j k

P N t n J i H t z d Q z

Q t Q t z d Q z

Q t Q t

=

= = =

+

= =

= = = − −

= − −

= −

∑∫

∑ ∑ ∑∫

∑ ∑

 (3.23) 

Using the following notation: 

 
( )

( )

( ) 0

0
1

( , ) ( ) , ,

( , ) ( ) , ( , ) ,

A
ij N t

m
A A

i ij
j

P t n P N t n J j J i

P t n P N t n J i P t n
=

= = = =

⎛ ⎞
= = = =⎜ ⎟

⎝ ⎠
∑

 (3.24) 

we obtain from relations (3.23), the following recurrence formulas: 

 1

1

( , ) ( , 1) ( ),

( , ) ( , 1) ( ),

m
A A A

ij kj ik
k

m
A A A

i k ik
k

P t n P t n Q t

P t n P t n Q t

=

=

= − •

= − •

∑

∑
 (3.25) 

with of course: 

 
( ,0) (1 ( )),

( ,0) 1 ( ).

A
ij ij i

A
i i

P t H t

P t H t

δ= −

= −
 (3.26) 

If we are only interested in one type of claim, say j, it suffices to consider the 
delayed renewal process characterized by ( ),

A A
ij jjG G . In this case we get 
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 0 ( 1) ( 1)

1 ( ), 0,
( ( ) )

( )( ), 1.

A
ij

j A A n A n
ij jj jj

G t n
P N t n J i

G G G t n− −

⎧ − =⎪= = = ⎨ • − ≥⎪⎩
 (3.27) 

For the means 0( ) ( ( ) )A
ij jH t E N t J i= = , results (9.7) and (3.9) of Chapter 2 

give: 

 ( )

1

( ) ( ) ( ), ,

( ) ( ).

ij ij ij jj

n
jj jj

n

H t G t G H t i j

H t H t
∞

=

= + • ≠

=∑
 (3.28) 

Finally, Proposition 7.2 of Chapter 2 is interesting here to get asymptotic 
normality: 

 
2

3( ) , ,j
j

jj jj

ttN t N
σ

μ μ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

≺  (3.29) 

2,jj jμ σ  being respectively the mean and the variance of the r.v. ( )A
nT j j defined 

in Chapter 3, section 6, the latter supposed to be finite. 
 
3.1.3 The Accumulated Claim Amount Process 
 
This is the process ( ( ), 0)U t t ≥ where: 

 
( )

( )
1

( ) ( ).
N t

n N t
n

U t Y U
=

= =∑  (3.30) 

We already know that the marginal distribution of U(t), for fixed t, is important 
for insurance companies, as for example with a year as time unit, the value U(1) 
represents the total expenses of the company for paying the claims in this year t. 
Also, let us introduce the following marginal distributions: 
 ( ) 0( , ) ( ( ) , ),ij N tM t y P U t y J j J i= ≤ = =  (3.31) 
so that 

 

( ) 0

( )

0
0

( )

0

( , ) ( ( ) , ),

( , ) (1 ( )) ( , ),

( , ) ( , ) (1 ( )),

ij N t

t A n
ij j ij

n

n A
ij ij j

n

M t y P U t y J j J i

M t y H t z dQ z y

M t y Q z y H t z

∞

=

∞

=

= ≤ = =

= − −

= • − −

∑∫

∑

 (3.32) 

where the convolution product only acts on the temporal variable. 
In case of conditional independence, this last result becomes: 
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( )

0
0

( ) ( )

0

( , ) (1 ( )) ( ( ) ( )) ,

( , ) ( ( )) ( ( )) (1 ( )).

t A A B n
ij j ij ij ij

n

A n B n A
ij ij ij ij j

n

M t y H t z d p F z F y

M t y p F z F y H t z

∞

=

∞

=

= − −

= • − −

∑∫

∑
 (3.33) 

Let us remark that for m=1, this last formula gives result (1.19) for Andersen’s 
risk model. 
 
3.1.4 The Premium Process 
 
We will use the same approach as in section 1.1.2. From (3.29), we know that 

 

1

( )
lim , , ,

A
ij j

mt

k k
k

H t
i j I

t
π

π η
→∞

=

= ∈

∑
 (3.34) 

and it follows that for t large, we have: 

 0

1

( ( ) ) , , ,i
j m

k k
k

tE N t J i i j Iπ

π η
=

= ≈ ∈

∑
 (3.35)  

and so, approximately, the mean cost of the ( )jN t  claims of type j on ( ]0,t  is 

 
B

j

k k
k

t
η
π η∑

, (3.36) 

and finally, we get: 

 ( ) 0( ) .

B
j j

j
N t A

k k
k

E U J i
π η

π η
= ≈

∑
∑

 (3.37) 

This last relation shows that, whatever the initial state is, the total mean cost of 
the claims is more or less than ct  with 

 .

B
j j

j
A

k k
k

c
π η

π η
≈
∑
∑

 (3.38) 

It follows that if we take this value c  as constant premium rate per unit of time, 
we have an asymptotically fair game between the insurance company and the 
insured. 
Let us point out that the value of this premium rate only depends on the means of 
inter-arrivals and claim amounts and also the stationary distribution of the 
embedded MC of successive claim or environment types. All of them may be 
easily computed with the statistical data of observed claims. 
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3.1.5 The Risk and Risk Reserve Processes 
 
Definitions (1.20) and (1.21) are still valid for the SMRM so that the risk process 
is defined by (U(t) − ct ,t≥ 0) and the risk reserve process by ( ( ), 0)t tα α= ≥  
with  ( )tα =u+U(t) − ct where u is as usual the initial reserve or equity of the 
company and c the loaded premium rate: 
 (1 ) .c cη= +  (3.39) 
 
3.2 The Stationary Semi-Markov Risk Model  
 
Using a result from Chapter 3 section 11, the stationary version of the SMRM is 
obtained if we take for 0 1( , )J X the following initial distributions: 

 
0

1 1 0 0

( ) ,

( , ) (1 ( ) ,

A
i i

A
k k

k

xij A
ijA

i

P J i

p
P X x J j J i F z dz

π η
π η

η

= =

≤ = = = −

∑

∫
 (3.40) 

so that 

 
0

1 1

(1 ( )
( , ) .

x A
i ij ij

i
A

k k
k

p F z dz
P X x J j

π

π η

−
≤ = =

∑ ∫
∑

 (3.41) 

Then we know that the process ( ) ( ) 1 ( ) 1(( , , ), 0)N t N t N tJ J T t t+ + − ≥  is stationary with: 

 ( ) ( ) 1 ( ) 1 0
( , , ) (1 ( ) .

xj jk A
N t N t N t jkA

i i
i

p
P J j J k T t x F z dz

π
π η+ += = − ≤ = −∫∑

 (3.42) 

The interest of stationary models in classical risk theory (take here m=1!) has 
been investigated by Thorin (1975). 
 
3.3 Particular SMRM With Conditional Independence 
 
We know SMRM’s with conditional independence are entirely characterized by 
the triplet of matrices ( , , )A BP F F  where 
 , , ,A A B B

ij ij ijp F F⎡ ⎤ ⎡ ⎤⎡ ⎤= = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦P F F  (3.43) 

as we know that in this case both claim arrival and claim amount processes are 
SMP characterized respectively by ( , )AP F and ( , )BP F . 
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Paraphrasing, as before, Kendall‘s notation for queuing theory, we will denote 
this model by SM/SM with respect to the order claim arrival process/claim 
amount process. 
 
3.3.1 The SM/G model 
 
In this model, the claim arrival process is an SMP defined by the couple ( , )AP F  
and for B F , we choose 
 ( ) ( ), , , 0.B

ijF y B y i j I y= ∀ ∈ ≥  (3.44) 

This means that the sequence ( , 1)nY n ≥  is a sequence of i.i.d. random variables 
with B as common d.f. 
 
3.3.2 The G/SM model 
 
This model is symmetric to the preceding one: the claim amount process is an 
SMP defined by the couple ( , )BP F  and for AF , we choose 
 ( ) ( ), , , 0.A

ijF x A x i j I x= ∀ ∈ ≥  (3.45) 

This means that the sequence ( , 1)nX n ≥  is a sequence of i.i.d. random variables 
with A as common d.f. 
 
3.3.3 The P/SM model 
 
This model is a particular case of the G/SM model where in addition the claim 
arrival process is a Poisson process of parameter λ . It follows that 

 
0, 0,

( )
1 , 0,x

x
A x

e xλ−

<⎧
= ⎨ − ≥⎩

 (3.46) 

and of course that: 

 ( )( ( ) ) .
!

n
t tP N t n e

n
λ λ−= =  (3.47) 

 
Remark 3.2 Let us remark that the intersection of the first two models, called the 
G/G model, gives Andersen’s model with 
 1, ( ) ( ), ( ) ( ), ,A B

ij ijm F x A x F y B y i j I= = = ∈  (3.48) 
and that the particular P/SM model with 
 1, ( ) ( ), ,B

ijm F y B y i j I= = ∈  (3.49) 
is identical to the Cramer-Lundberg model (see section 1) 
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3.3.4 The M/SM model 
 
Here, we keep a semi-Markov process ( , )BP F  for the claim amount process and  
we assume that the claim arrival process is a continuous time Markov process 
(see Chapter 3, section 12.3), i.e. AF is defined as: 

 
0, 0,

( )
1 , 0.i

A
ij x

x
F x

e xλ−

<⎧
= ⎨ − ≥⎩

 (3.50) 

 
3.3.5 The M' /SM Model 
 
This is a variant of the preceding model, in which we set: 

 
0, 0,

( )
1 , 0.j

A
ij x

x
F x

e xλ−

<⎧⎪= ⎨
− ≥⎪⎩

 (3.51) 

In this case, the interarrival time distribution only depends on the future state, 
and not on the past one, which is, as we already mentioned, more natural in risk 
theory, but now the arrival process is no longer Markovian. 
 
3.3.6 The SM(0)/SM(0) Model 
 
Particular assumptions of this model are: 

 
( ) ( ), ( ) ( ), , , , 0,

, , .

A A B B
ij j ij j

ij j

F x F x F y F y i j I x y

p i j Iπ

= = ∈ >

= ∈
 (3.52) 

So the claim types are independent and have the same distribution.  
If we suppose that the initial type 0J has the same distribution, the processes 
( , 1),( , 1)n nX n Y n≥ ≥ become two renewal processes having as d.f. respectively 
 ( ) ( ), ( ) ( ),A A B B

j j j j
j j

F x F x F y F yπ π= =∑ ∑  (3.53) 

but, due to the J-process, are not independent as: 
 ( , , ) ( ) ( ).A B

n n n j j jP X x Y y J j F x F yπ≤ ≤ = =  (3.54) 
Let us recall that, in the terminology of Pyke (1962), the processes 
(( , ), 0),(( , ), 0)n n n nJ X n J Y n≥ ≥  are called SMP of zero order of second type (see 
Chapter 4, section 13.2). 
 
3.3.7 The SM' (0)/SM' (0) Model 
 
Particular assumptions of this model are: 

 
( ) ( ), ( ) ( ), , , , 0,

, , .

A A B B
ij i ij i

ij j

F x F x F y F y i j I x y

p i j Iπ

= = ∈ >

= ∈
 (3.55) 
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Here too, the claim types are independent and have the same distribution but 
depending on the preceding claim. 
If we suppose that the initial type 0J has the same distribution, the processes  
 ( , 1),( , 1)n nX n Y n≥ ≥  become two renewal processes having as d.f. respectively 
 ( ) ( ), ( ) ( ),A A B B

j j j j
j j

F x F x F y F yπ π= =∑ ∑  (3.56) 

but, due to the J-process, not independent as: 
 ( , , ) ( ) ( ).A B

n n n j i i i
i

P X x Y y J j F x F yπ π≤ ≤ = = ∑  (3.57) 

Let us recall that, in the terminology of Pyke (1962), the processes 
(( , ), 0),(( , ), 0)n n n nJ X n J Y n≥ ≥  are called SMP of zero order of first type. 
 
3.3.8 The mixed zero order SM ' (0)/SM(0) and SM(0)/SM' (0) models 
 
These last two particular models are obtained by making the following two 
choices: 
a) for the SM ' (0)/SM(0) model: 

 
, , ,

( ) ( ), , 0,
( ) ( ), , 0,

ij j
A A

ij i
B B

ij j

p i j I
F x F x i I x

F y F y j I y

π⎧ = ∈
⎪ = ∈ ≥⎨
⎪ = ∈ ≥⎩

 (3.58) 

b) for the SM(0)/SM ' (0) model: 

 
, , ,

( ) ( ), , 0,
( ) ( ), , 0.

ij j
A A

ij j
B B

ij i

p i j I
F x F x i I x
F y F y j I y

π⎧ = ∈
⎪ = ∈ ≥⎨
⎪ = ∈ ≥⎩

 (3.59) 

For the SM ' (0)/SM(0) model, it is straightforward to see that: 
 ( , , ) ( ) ( )B A

n n n j j i i
i

P X x Y y J j F y F xπ π≤ ≤ = = ∑  (3.60) 

and for the SM(0)/SM ' (0) model: 
 ( , , ) ( ) ( ).A B

n n n j j i i
i

P X x Y y J j F x F yπ π≤ ≤ = = ∑  (3.61) 

Here too, the processes ( , 1),( , 1)n nX n Y n≥ ≥ become two renewal processes 
having the d.f given by relation (3.56) but furthermore they are independent. 
Consequently, if one makes abstractions of the types of claims, these two last 
models may be treated, at least for the ruin problem, as a G/G model 
characterised by the d.f. ,A BF F . 
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3.4 The Ruin Problem For The General SMRM 
 
3.4.1 Ruin and Non-Ruin Probabilities 
 
Using definition (1.22) for the lifetime T of the company, 
 { }inf : ( ) 0 ,T t tα= <  (3.62) 
we know that the event “ruin” occurs before or at time t iff T t≤ and of course 
the complementary event called “non-ruin” iff T>t. 
As we must now take into account the types of claims, we will use the following 
notation for transient non-ruin and ruin probabilities, i.e. on the finite time 
horizon [ ]0,t , 

 
( , ) ( , ( ) (0) ),

( , ) ( , ( ) (0) )( 1 ( , )).
ij

ij ij

u t P T t Z t j Z i

u t P T t Z t j Z i u t

φ

ϕ

= > = =

Ψ = ≤ = = = −
 (3.63) 

The asymptotic non-ruin and ruin probabilities, i.e. on an infinite time horizon, 
are defined as 

 
( ) ( , ( ) (0) ) lim ( , ),

( ) ( , ( ) (0) ) lim ( , )( 1 ( )).

ij ijt

ij ij ijt

u P T Z t j Z i u t

u P T Z t j Z i u t u

φ φ

ϕ

→∞

→∞

= = ∞ = = =

Ψ = < ∞ = = = Ψ = −
 (3.64) 

The following results are trivial but useful: 
 
(i)   for every fixed t, , , ( , )iji j I u tφ∀ ∈  is increasing in u and ( , )ij u tΨ decreasing, 
(ii)  for every fixed u, , , ( , )iji j I u tφ∀ ∈  is decreasing in t and ( , )ij u tΨ increasing, 
(iii) , , , : ( , ) ( ), ( , ) ( ).ij ij ij iju t i j I u t u u t uφ φ∀ ∀ ∀ ∈ ≥ Ψ ≥ Ψ  (3.65) 
 
As we already said in section 1.1.4, one of the most important problems in risk 
theory is the optimal determination of the security loading η  such that the 
probability of ruin, transient or asymptotic, is larger than 1 , 0ε ε− >  being fixed, 
a problem equivalent to the optimal determination of the solvency margin. 
Often, the problem is solved for the stationary version, thus giving excessive and 
therefore careful values for η . 
As is often the case, if we are not interested in the value of Z(t), then we may 
introduce the following ruin probabilities: 

 1 1

1 1

( , ) ( , ), ( ) ( ),

( , ) ( , ), ( ) ( ).

m m

i ij i ij
j j

m m

i ij i ij
j j

u t u t u u

u t u t u u

φ φ φ φ
= =

= =

= =

Ψ = Ψ Ψ = Ψ

∑ ∑

∑ ∑
 (3.66) 
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Moreover, if we start with π as initial distribution for 0J , we define the last four 
ruin and non-ruin probabilities: 

 1 1

1 1

( , ) ( , ), ( ) ( ),

( , ) ( , ), ( ) ( ).

m m

i i i i
i i

m m

i i i i
i i

u t u t u u

u t u t u u

φ π φ φ π φ

π π

= =

= =

= =

Ψ = Ψ Ψ = Ψ

∑ ∑

∑ ∑
 (3.67) 

Finally, for the stationary model defined in section 3.2, we introduce these last 
ruin and non-ruin probabilities: 

 

' ' '0 0
'

1

1( ) (1 ( ) ( ) ( ),

( ) ( ), ( ) 1 ( ).

u cts A B
j ll l j ll

l lk k
k

m
s s s s

j
j

u F t dt u ct y d F y

u u u u

φ φ
π η

φ φ φ

∞ +

=

= − + −

= Ψ = −

∑∑∫ ∫∑

∑
 (3.68) 

 
3.4.2 Change of Premium Rate 
 
Let us start with a general SMRM of kernel (.,.)ijQ⎡ ⎤= ⎣ ⎦Q and with c as premium 

rate per unit of time. 
First, we will show that, without loss of generality, we can always work with an 
equivalent SMRM for which c=1. 
Indeed, if such is not the case, let us introduce the following new r.v.: 
 ' '

0 0 , , 1n nX X X cX n= = ≥ ,a.s. (3.69) 
The SM kernel Q '  of the process ( )', , , 0n n nJ X Y n ≥ is given by: 

 
1

1 1

' ' '

'

( , ) ( , , ( , , , ), 1,..., 1) ,

( , ) ( , ).

n

n n

J j n n n k k k

J j J j

Q x y P J j X x Y y J X Y k n

xQ x y Q y
c

−

− −

= = ≤ ≤ = −

=
 (3.70) 

For the SMRM with kernel Q ' , we have: 
 ' ' ', , , ,ij ij ij ij ij ijp p a ca b b i j I= = = ∈  (3.71) 
so that 
 ' ', , ,A A B B

i i i ic c i Iη η η η= = ∈  (3.72) 
and by relation (3.20) 
 ' , ,jj jjc j Iμ μ= ∈  (3.73) 
and by relations (1.10) and (3.38) 

 1'

B
i i

i
A

i i
i

cc
c c

π η

π η
= =
∑
∑

. (3.74) 
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Taking into account the loading factorη , by relation (3.39), we know that the 
value of c '  is given by: 
 ' (1 ) 'c cη= +  (3.75) 
or by (3.74) and(3.39) again: 

 ' (1 ) 1.cc
c

η= + =  (3.76) 

As in this last relation the loading factorη  is strictly positive, the last equality 
shows that the ratio /c c is strictly inferior to 1 and so by relations (3.74) and 
(3.72) that the condition of having a strictly positive loading factor η  is 
equivalent to having, for the process ( )', , , 0n n nJ X Y n ≥ , the condition 

 ' 1.

B
i i

i
A

i i
i

π η

π η
<

∑
∑

 (3.77) 

 
3.4.3 General Solution Of The Asymptotic Ruin Probability Problem for a 
general SMRM 
 
From the results of the last subsection, let us consider a general ergodic SMRM 
of kernel (.,.)ijQ⎡ ⎤= ⎣ ⎦Q with c=1 and let us focus our attention on the process 

 ( )( , ), 0n n nJ Y X n− ≥ ; (3.78) 
Clearly, this process can be seen as defining an SMRW of SM kernel r Q  given 
by 
 

{ }( , ):

( ) ( , ).r
ij ij

z

Q z Q d d
ξ ζ ξ ζ

ξ ζ
− ≤
∫∫  (3.79) 

In the special case of conditional independence, we get: 

 ( ) ( ) ( ).r B A
ij ij ij ijQ z p F z d Fξ ξ

+∞

−∞
= +∫  (3.80) 

We know that the position at epoch n of the SMRW is given by the partial sums 
( , 0)nS n ≥  related to the random sequence (( , 0)n nY X n− ≥  and introducing the 
r.v. M defined by relation (20.1) of Chapter 3, that is { }0 1sup , ,..., ,...nM S S S= , 
we know that: 
 0( ) ( , lim ), 0, , ,ij nn

u P M u J j J i u i j Iφ
→∞

= ≤ = = ≥ ∈  (3.81) 

and since the event non-ruin on [ )0,∞ implies non-ruin at the first claim arrival 
time, we have: 
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0, 0,

( ) , ,( ) ( ), 0.
u rij

kj ik
k

u
u i j Iu z d Q z uφ φ

−∞

<⎧
⎪= ∈⎨ − >⎪⎩
∑∫

 (3.82) 

Summing over j, we get: 

 
0, 0,

( ) , .( ) ( ), 0,
u ri

k ik
k

u
u i Iu z d Q z uφ φ

−∞

<⎧
⎪= ∈⎨ − >⎪⎩
∑∫

 (3.83) 

which is a Wiener-Hopf system of integral equations identical to the system (8.6) 
of Chapter 5 as 
 0( ) ( , ), 0,i u P M u J i u i Iφ = ≤ = ≥ ∈  (3.84) 
as in relation (20.6) of Chapter 3. 
Considering now system (3.83) only for non-negative values of u, we know from 
a result of Janssen (1970) mentioned in section 20 of Chapter 3 that this system 
has a unique P-solution iff 
 0.r

k k
k
π η <∑  (3.85) 

So, if this condition is not fulfilled, the SMRW ( )( , ), 0n nJ S n ≥ drifts towards 
+∞  and so ruin on [ )0,∞  is a certain event regardless of 0J , that is, in this case: 
 ( ) 0, 0, .i u u i Iφ = ≥ ∈  (3.86) 
As  
 , ,r B A

k k k k Iη η η= − ∈  (3.87) 
condition (3.83) is equivalent to 
 ( ) 0B A

k k k
k
π η η− <∑ , (3.88) 

which is equivalent to condition (3.77) always supposed to be fulfilled and 
equivalent to the adjunction of a positive security loading to spoil the 
asymptotically fair game “insurance company-policyholders” in favour of the 
insurance company as, without this adjunction the ruin on an infinite horizon 
time is certain. 
Using the unicity theorem of Janssen (1970), it is clear that the following 
relations are true: 
 ( ) ( ), , , 0.ij j iu u i j I uφ π φ= ∈ ≥  (3.89) 
We have thus proved the following theorem. 
 
Theorem 3.1 For an ergodic SMRM, for every initial state i, the ruin on an 
infinite time horizon is certain if condition (3.77) is not fulfilled. 
On the contrary, if this condition is satisfied, then for every initial state i: 
 ( ) ( ), , , ,ij j iu u i j I uφ π φ+ += ∈ ∈  (3.90) 
with  
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 0( ) ( ) ( ), ( ) ( ), , ,ij ij i iu U u u u u i j I uφ φ φ φ+ += = ∈ ∈  (3.91) 
and by (3.81) 

 ( ) ( ) ( ), , , .
u r

i k ik
k

u u z d Q z u i Iφ φ+ +

−∞
= − ∈ ∈∑∫  (3.92) 

 
Let us mention that the passage to the functions ijφ

+  is done because we are only 
interested in the non-ruin probabilities for positive values of the reserve u, though 
it may be that these probabilities are not necessarily zero for u negative. 
Though there exist a lot of theoretical results on the Wiener-Hopf integral system 
(3.92) like factorisation results and so on, there exist no explicit forms for non-
ruin probabilities for a general SMRM and so our approach is to see what 
particular SMRM can be treated in such a way that right information can be 
obtained by transferring the problem towards a model for which an explicit 
solution exists or at least having satisfactory information. 
Of course, for the general SMRM, the numerical approach remains very 
important. 
 
Remark 3.3 We know that for m=1, the GSMRM brings us back to the G/G 
model. 
So, for this one, the system (3.92) becomes: 

 
( ) ( ) ( ), ,

( ) ( ) ( ).

u r

r

u u z d Q z u

Q z B u dA

φ φ

ξ ξ

+ +

−∞

+∞

−∞

= − ∈

= +

∫
∫

 (3.93) 

 
3.5 The Ruin Problem For Particular SMRM 
 
This section undertakes an analytical study of the particular SMRM introduced 
above to get supplementary results for solving the ruin problem in these 
particular cases. 
 
3.5.1 The Zero Order Model SM(0)/SM(0) 
 
In this case, we have from relation (3.79) that: 

 ( ) ( ) ( ),r B A
ij j j jQ z F z d Fπ ξ ξ

+∞

−∞
= +∫  (3.94) 

such that we may write: 
 ( ) ( )r r

ij jQ z Q z=  (3.95) 
and the Wiener-Hopf system (3.92) becomes: 

 ( ) ( ) ( ), , , .
u r

i k k
k

u u z d Q z u i Iφ φ+ +

−∞
= − ∈ ∈∑∫  (3.96) 
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It follows that all the functions iφ
+ i=1,…,m are equal to a common function 

φ+ satisfying (3.96), that is: 

 
( ) ( ) ( ), ,

( ) ( ) ( ) ( ), .

u r

r r B A
k j k

k k

u u z d Q z u

Q z Q z F z d F z

φ φ

π ξ ξ

+ +

−∞

+∞

−∞

= − ∈

= = + ∈

∫
∑ ∑ ∫

 (3.97) 

In conclusion, relation (3.97) shows that the non-ruin probabilities for zero order 
models SM(0)/SM(0) can be computed by an associated G/G model of kernel .r Q  
 
3.5.2 The Zero Order Model SM' (0)/SM' (0) 
 
In this case, we have from relation (3.79) that: 

 
( ) ( ) ( )

           ( )

r B A
ij j i i

j i

Q z F z d F

F z

π ξ ξ

π

+∞

−∞
= +

=
∫  (3.98) 

with 

 ( ) ( ) ( ), 1,..., ,B A
i i iF z F z d F i m zξ ξ

+∞

−∞
= + = ∈∫  (3.99) 

such that the Wiener-Hopf system (3.92) becomes: 

 
( ) ( ) ( ),

           ( ( )) ( ).

u

i k k i
k

u

k k i
k

u u z dF z u

u z dF z

φ π φ

π φ

+ +

−∞

+

−∞

= − ∈

= −

∑ ∫

∑∫
 (3.100) 

From this last relation, it follows that, using definition (3.67), we get: 

 
( ) ( ) ( ), ,

( ) ( ) ( ), .

u r

r B A
k k k

k

u u z d Q z u

Q z F z d F z

φ φ

π ξ ξ

+ +

−∞

+∞

−∞

= − ∈

= + ∈

∫
∑ ∫

 (3.101) 

If we suppose to know the value of φ+ , the non-ruin probabilities iφ
+ are also 

known from relation (3.100): 

 ( ) ( ) ( ), 1,..., .
u

i iu u z dF z i mφ φ+ +

−∞
= − =∫  (3.102) 

In conclusion, relation (3.101) and (3.102) show that the non-ruin probabilities 
for zero order models SM ' (0)/SM ' (0) can be computed by an associated G/G 
model of kernel .r Q  
 
3.5.3 The Model M/SM 
 
Supposing that claim distributions depend only on the type of the occurred claim, 
let us recall that for this model, we have: 
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0, 0,

( ) ( ) ( ), , .
1 , 0,i

A B
ij ij jx

x
F x F y B y i j I

e xλ−

≤⎧
= = ∈⎨ − ≥⎩

 (3.103) 

 
Instead of starting with the Wiener-Hopf system, we may resort to elementary 
probabilistic reasoning to obtain the following relations: 

 
0 0

1
( ) ( ) ( ), .i

m u

i ij i j j
j

u p e d u x dB x i I
τλ τφ λ τ φ τ

∞ +−

=

= + − ∈∑ ∫ ∫  (3.104) 

These relations are obtained by conditioning with the occurrence of the first 
claim that occurs in (t,t+dt) and of type j. 
Using the change of variables u τ ξ+ = , we get: 

 ( )

0
1

( ) ( ) ( ), .i

m
u

i ij i j ju
j

u p e d x dB x i I
ξλ ξφ λ ξ φ ξ

∞ − −

=

= − ∈∑ ∫ ∫  (3.105) 

These last relations show that the non-ruin probabilities iφ  are differentiable and 
that: 

 '

0
1

( ) ( ) ( ) ( ), .
m

i i i ij j j
j

u u p x dB x i I
ξ

φ φ λ φ ξ
=

= − − ∈∑ ∫  (3.106) 

To simplify, let us suppose that the d.f. jB are differentiable with jb  as 
derivative; then, taking Laplace transforms of both members of this relation, we 
get (using notation introduced in Chapter 2, section 5.1): 

 
1

( ) (0) ( ) ( ) ( ),
m

i i i i i ij j j
j

s s s p s b s i Iφ φ λφ λ φ
=

− = − ∈∑  (3.107) 

or 

 
1

( ) ( ( ) ) ( ) (0), .
m

i i ij j ij j i
j

s s p b s s i Iφ λ δ φ φ
=

+ − = ∈∑  (3.108) 

With the following matrix notation: 
 ( ) ( ) , , ( ) ( ) ,i ij j i ij ij js p b s s b sλ λδ δ⎡ ⎤ ⎡ ⎤⎡ ⎤= = =⎣ ⎦⎣ ⎦ ⎣ ⎦M Λ b  (3.109) 

and if ( )sφ  and ( )tφ represent respectively the column vectors of the functions 
( ), 1,...,i s i mφ = and ( ), 1,...,i t i mφ = , the last relation may be written in the form: 

 ( ) (0),sφ φ φ+ − =M Λ  (3.110) 
and as  
 ,=M ΛPb  (3.111) 
we get: 

 ( ) (0).s
s

φ φ
⎛ ⎞−

− =⎜ ⎟
⎝ ⎠

I PbI Λ  (3.112) 
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With the matrix norm defined as the sum of the absolute values of all its 
elements, the norm of the matrix ( )sA defined as 

 1( ) ( ( ))s s
s

= −A Λ I Pb  (3.113) 

is strictly inferior to 1 for s sufficiently large as a result of the fact that 
 lim ( ) .

s
s

→∞
=A 0  (3.114) 

Consequently, for such values of s, ( )s−I A  is invertible and moreover 

 ( )1

0
( ( )) ( ) .

n

n
s s

∞
−

=

− =∑I A A  (3.115) 

By the inverse Laplace transform, relation (3.113) gives the value of the matrix 
A: 
 ( ) ( ( ))t t= −A Λ I PB  (3.116) 
where B(t) is the diagonal matrix  

 
0

( ) ( ( )),

( ) ( ) , 1,..., .

ij j

t

j j

t B t

t b z dz j m

δ=

= =∫

B

B
 (3.117) 

By the inverse Laplace transform again, from relations (3.112), (3.116) and 
(3.115), we find a theoretical explicit expression for the vector ,ϕ  

 

( )

0
0

1

( )

0
0

( ) ( ) (0),

(0) ( )

u n

nj

u n

nj

u t dt

t dt

φ φ

φ

∞

=

−
∞

=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

∑ ∫

∑ ∫

A

A 1

 (3.118) 

where 1 is the m-dimensional vector with all components equal to1 as 
lim ( ) .
u

uφ
→∞

= 1  

 
Remark 3.4 
(i)  For m=1, we get the  result (1.60) for the P/G model. 
(ii) For the stationary model introduced in section 3.2, we know from relation 
(3.68) that 

 ' ' '1 0
' 0

1( ) ( ) ( )l
u zzs

l ll l l
l lk k

k

u p e dz u z x dB xλφ π φ
π λ

∞
+−

−= + −∑∑ ∫ ∫∑
, (3.119) 

so that from relation (3.105), we get: 

 1

1( ) ( ).s l
l

lk k l
k

u uπ
φ φ

π λ λ−= ∑∑
 (3.120) 
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If all the kλ  are equal to λ , we have a P/SM model for which the last relation 
becomes: 
 ( ) ( ).s

l l
l

u uφ π φ=∑  (3.121) 

(iii) If 1,c ≠  it suffices to replace in the above formulas, iλ  by / , 1,..., .i c i mλ =  
 
3.5.4 The Zero Order Models As Special Case Of The Model M/SM 
 
3.5.4.1 The P/SM(0) model 
 
In section 3.5.1, for the Zero Order Model SM(0)/SM(0) we established the 
equality of all the non-ruin probabilities , 1,..., .i i mφ =  
As for the P/SM(0) model, we have: 

 
0, 0,

( ) ( )
1 , 0,

A A
x

x
F x F x

e xλ−

<⎧
= = ⎨ − ≥⎩

 (3.122) 

we know from relation (3.97) that: 

 ( ) ( ( ) ( )r B A
j j

j

Q u F z d Fπ ξ ξ
+∞

−∞

= +∑∫  (3.123) 

and consequently, the G/G associated model becomes here a P/G model with 
 ( ) ( ).B

j j
j

B y F yπ=∑  (3.124) 

So, from the result (1.60), we obtain 

 

( )

0
0

( ) ( ) (1 ) ( ) , 1,..., ,

( ) 1 ( ),

.

u n
i

n
B

j j
j

B
j j

j

u u B t dt i m

B t F t

φ φ λβ

π

β π η

∞

=

= = − =

= −

=

∑∫
∑

∑

 (3.125) 

For the stationary model, we get from relation (3.121) that: 
 ( ) ( ).s u uφ φ=  (3.126) 
 
3.5.4.2 The P/SM ' (0) model 
 
The P/SM ' (0) model is the particular SM ' (0)/SM ' (0) model for which (3.122) 
still holds. 
By relation (3.101), we know that the function iφ  is still given by the expression 
(3.125) and that for the non-ruin probabilities, we have result (3.102), 

 ( ) ( ) ( ), 1,...,
u

i iu u z dF z i mφ φ+ +

−∞
= − =∫  (3.127) 

with, by (3.99): 
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0

( ) ( ) , 1,..., , .B
i iF z F z e d i m zλξλ ξ ξ

+∞ −= + = ∈∫  (3.128) 

 
3.6 The M ' /SM Model  
 
3.6.1 General solution  
 
Let us recall that for this model, we have: 

 
0, 0,

( ) ( ) ( ), , .
1 , 0,j

A B
ij ij jx

x
F x F y B y i j I

e xλ−

≤⎧⎪= = ∈⎨
− ≥⎪⎩

 (3.129) 

Let us first verify that the process 1(( , , ,), 0)n n nJ X Y n+ ≥  is an SMRP satisfying 
the assumption of conditional independence. Indeed, we may write that 
 1( , , ( , , ), , ) ( ) ( ).A

n n n n kl k kP J l X x Y y J X Y n J k p F x B yν ν ν ν+ = ≤ ≤ ≤ = = (3.130) 
Now let ( ), 1,...,i u i mφ =  be the non-ruin probabilities related to the process 

1(( , , ,), 0)n n nJ X Y n+ ≥  starting with 1J i= . 
It is clear that the probabilities we want to know, ( ), 1,...,i u i mφ = , are given by: 

 
1

( ) ( ), 1,..., .
m

i ij j
j

u p u i mφ φ
=

= =∑  (3.131) 

So, it suffices to know the non-ruin probabilities ( ), 1,...,i u i mφ = . 
Using a reasoning similar to that used for the M/SM(0) model, we get: 

 
0 0

1

( ) ( ) ( ), .i

m u

i ij i j i
j

u p e d u x dB x i I
τλ τφ λ τ φ τ

∞ +−

=

= + − ∈∑ ∫ ∫  (3.132) 

These relations are obtained by conditioning with the occurrence of the first 
claim that occurs in (t,t+dt) and of type j. 
Using the change of variables u τ ξ+ = , we get: 

 ( )

0
1

( ) ( ) ( ), .i

m
u

i ij i j iu
j

u p e d x dB x i I
ξλ ξφ λ ξ φ ξ

∞ − −

=

= − ∈∑ ∫ ∫  (3.133) 

These last relations show that the non-ruin probabilities iφ  are differentiable and 
that: 

 '

0
1

( ) ( ) ( ) ( ), .
m

i i i i ij j i
j

u u p x dB x i I
ξ

φ λφ λ φ ξ
=

= − − ∈∑ ∫  (3.134) 

This system is similar to (3.106) and here too, to simplify, let us suppose that the 
d.f. jB are differentiable with jb  as derivative; then, taking Laplace transforms of 
both members of this relation, we get (using notation introduced in Chapter 2, 
section 5.1): 
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1

( ) (0) ( ) ( ) ( ), ,
m

i i i i i ij j i
j

s s s p s b s i Iφ φ λφ λ φ
=

− = − ∈∑  (3.135) 

or 

 
1

( ) ( ( ) ) ( ) (0), .
m

i i ij j ij j i
j

s s p b s s i Iφ λ δ φ φ
=

+ − = ∈∑  (3.136) 

With the following matrix notation: 
 ( ) ( ) , , ( ) ( ) ,i ij j i ij ij is p b s s b sλ λδ δ⎡ ⎤ ⎡ ⎤⎡ ⎤= = =⎣ ⎦⎣ ⎦ ⎣ ⎦N Λ b  (3.137) 

and with ( )sφ  and ( )tφ representing respectively the column vectors of the 

functions ( ), 1,...,i s i mφ =  and ( ), 1,...,i t i mφ = , the last relation may be written in 
the form: 
 ( ) (0),sφ φ φ+ − =N Λ  (3.138) 
and as  
 ,=N ΛbP  (3.139) 
we get: 

 ( ) (0).s
s

φ φ
⎛ ⎞−

− =⎜ ⎟
⎝ ⎠

I bPI Λ  (3.140) 

As in section 3.4, with the matrix norm defined as the sum of the absolute values 
of all its elements, the norm of the matrix ( )sA defined as 

 1( ) ( ( ) )s s
s

= −A Λ I b P  (3.141) 

is strictly inferior to 1 for s sufficiently large as a result of the fact that 
 lim ( ) .

s
s

→∞
=A 0  (3.142) 

Consequently, for such values of s, ( )s−I A is invertible and moreover 

 ( )1

0
( ( )) ( ) .

n

n
s s

∞
−

=

− =∑I A A  (3.143) 

By the inverse Laplace transform, relation (3.141) gives the value of the matrix 
A: 
 ( ) ( ( ) )t t= −A Λ I B P  (3.144) 
where B(t) is the diagonal matrix  

 
0

( ) ( ) ,

( ) ( ) , 1,..., .

ij j

t

j j

t B t

B t b z dz j m

δ⎡ ⎤= ⎣ ⎦

= =∫

B
 (3.145) 

By the inverse Laplace transform again, from relations (3.142), (3.144) and 
(3.143), we find a theoretical explicit expression for the vector ,φ  
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( )

0
0

1

( )

0
0

( ) ( ) (0),

(0) ( )

u n

nj

u n

nj

u t dt

t dt

φ φ

φ

∞

=

−
∞

=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

∑ ∫

∑∫

A

A 1

 (3.146) 

where 1 is the m-dimensional vector with all components equal to 1 as 
 lim ( ) .

u
uφ

→∞
= 1  (3.147) 

Together with relation (3.130), relations (3.147) are formally equivalent to 
relations (3.118) for the M/SM(0) model for giving the explicit form of ruin 
probabilities for the M ' /SM(0) model. The difference between these two models 
appears in the definitions of the matrices A and A given by relations (3.118) and 
(3.144). 
The non-ruin probabilities for the model M/SM(0) and the non-ruin probabilities 

( ), 1,...,i u i mφ = for the model M ' /SM(0) are equal if the matrices P and B(t) 
commute for all positive t which is certainly true for m=1. For m>1, P and B(t) 
commute for all positive t iff functions ,i jB B  are identical whenever 0ijp > , i.e. 
whenever states i and j communicate in one step in the embedded MC of the 
types of claims. 
 
Remark 3.5 
(i) For the stationary model introduced in section 3.2, we know from relation 
(3.68) that 

 '
' ' '1 0

' 0

1( ) ( ) ( ).l
u zzs

l ll l l
l lk k

k

u p e dz u z x dB xλφ π φ
π λ

∞
+−

−= + −∑∑ ∫ ∫∑
 (3.148) 

From relations (3.131) and (3.133), we get 

 
0

0

( ) ( ) ( )i
u zz

i i i iu e dz u z x dB xλφ λ φ
∞

+−= + −∫ ∫  (3.149) 

which are inverse relations of (3.131). 
Using these relations in (3.148), we get the relation analogous to (3.120), 

 

'
'1

' '

1
' ' '

'
1

( )1( )

( )
        .

s l
l ll

l lk k l
k

l l l
l

k k
k

uu p

u

φ
φ π

π λ λ

π λ φ

π λ

−

−

−

=

=

∑∑∑

∑
∑

 (3.150) 

(ii) If 1,c ≠  it suffices to replace in the above formulas, iλ  by / , 1,..., .i c i mλ =  
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3.6.2 Particular cases: the M/M and M ' /M models 
 
3.6.2.1 The M/M model 
 
The M/M model is the particular M/SM model for which: 

 
0, 0,

( )
1 , 0.j

B yj

y
F y

e yβ
−

≤⎧⎪= ⎨
⎪ − ≥⎩

 (3.151) 

In this case, Janssen and Reinhard (1985) proved that the non-ruin probabilities 
, 1,...,i i mφ =  can be written in the form: 

 
0

( ) ( ) , 0, 1,...,it
i ij i j

j
u p e L u t dt u i mλφ λ

∞ −= + ≥ =∑ ∫  (3.152) 

where the functions jL  are solutions of the differential system: 

 
" 1 '( ) ( ) ( ) ( ( ) ( )) 0,

(0) 0, ( ) 1, 1,..., , 0.

j
j j j j j jk k

kj

j j

L u L u L u p L u

L L j m u

λ
β λ

β
−+ − − − =

= ∞ = = ≥

∑
 (3.153) 

For m=2, they give the following explicit form: 
 1 2

1 2( ) 1 , 1,2j jk u k u
j j ju e e jφ α α= − − =  (3.154) 

with an explicit form of the coefficients. 
 
3.6.2.2 The M ' /M model 
 
Here too, the M ' /M model is the particular M ' /SM model for which: 

 
0, 0,

( )
1 , 0.j

B yj

y
F y

e yβ
−

≤⎧⎪= ⎨
⎪ − ≥⎩

 (3.155) 

Here, relations (3.123) become: 

 '

0
( ) ( ) ( ) , .j

u z
u bi

i i i ij j
jj

u u p z e dz i I
b
λ

φ λφ φ
−

−

= − ∈∑ ∫  (3.156) 

It follows that the functions , 1,...,i i mφ =  are twice differentiable and that: 

 
]" '

2 0

' '

1 1( ) ( ) ( ) ( )

1         ( ) ( ) ( ) ( ), .

j

u z
u b

i i i i ij j j
j j j

i
i i i i i ij j

jj i

u u p z e dz u
b b

u u u p u i I
b b

φ λφ λ φ φ

λ
λφ λφ φ φ

−
−⎡

= − − +⎢
⎢⎣

⎡ ⎤= − − − ∈⎣ ⎦

∑ ∫

∑
 (3.157) 

Consequently, the functions , 1,...,i i mφ =  satisfy the following differential system 
of order 2: 
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 " '1( ) ( ) ( ) ( ) ( ), .i i
i i i i ij j

jj i i

u u u p u i I
b b b

λ λ
φ λ φ φ φ= − + − ∈∑  (3.158) 

For m=1, we recover the differential equation 

 1"( ) '( )u u
b

φ λ φ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (3.159) 

discussed in Gerber (1979). 
As initial conditions, we have from (3.156) 

 
'

lim ( ) 1,

(0) (0), 1,..., .

iu

i i i

u

i m

φ

φ λφ
→∞

=

= =
 (3.160) 

The interest of result (3.158) lies in the possibility it provides of stating the 
general solution as a linear combination of negative exponential functions, as in 
(3.154), usually with constant coefficients, which is always interesting from a 
numerical point of view. 
 
Remark 3.6 Concerning the numerical point of view, Reinhard and Snoussi 
(2002) give another approach using a discrete time scale and recursive algorithms 
to obtain the joint distribution of the surplus prior to ruin and to compute the 
severity of ruin. 
 
Nevertheless, let us mention that a prudent attitude of the insurance companies 
implies that the use of the non-ruin probability on an infinite time horizon is the 
best criteria and of course does not need to use the severity of ruin. 



Chapter 8 
 
RELIABILITY AND CREDIT RISK MODELS 
 
In this chapter, the reader will first find a short summary of the basic notions of 
reliability and then the semi-Markov extensions. 
After that, the classical problem of credit risk is also presented together with an 
analogy with reliability and it is shown how semi-Markov models are useful for 
this important topic of finance in connection with the new rules of the Basel 
Committee. 
 
1 CLASSICAL RELIABILITY THEORY 
 
Reliability theory is mainly concerned with the security of material fittings. 
A first distinction must be made between simple and complex structures. 
For a simple structure, it is possible to define what is called the lifetime of the 
considered system, defined as the r.v. T representing the time interval between 
time 0 and the time of the first failure, failure meaning that the system is out. 
A complex system is composed of several simple components, from which 
failures have an impact, more or less important, on the way the system is 
working. 
 
1.1 Basic Concepts 
 
Let us consider a simple structure called the reliability system S having r.v. T as 
lifetime, T being defined on the probability space ( ), , PΩ ℑ . 
 
Definition 1.1 The reliability function of S is given by the function U defined as  
 [ )( ) ( ), 0, .U t P T t t= > ∈ ∞  (1.1) 
 
U(t) represents the probability that no failure happens before t. If F represents the 
distribution function of T, it is clear that for all non-negative t: 
 U(t)=1−F(t). (1.2) 
If the density function f of T exists, we obtain: 

 ( ) ( ) .
t

U t f u du
∞

= ∫  (1.3) 

From now on, we always assume that the f or the derivative of U exists. 
 
Definition 1.2 The function r, defined as 
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 ( ) '( )( ) , 0,
1 ( ) ( )

f t U tr t t
F t U t

⎛ ⎞
= = − >⎜ ⎟− ⎝ ⎠

 (1.4) 

is called the failure rate of the component.  
 
Its meaning is simple: let us consider a time t such that the event {T>t} occurs. 
From basic definitions of conditional probability (relation (6.4) of Chapter 1) and 
from relation (1.2), we can successively write: 

 

( ) ( )
( )

( )
( )
'( )
( )

( ) .

P t T t dt
P T t dt T t

P T t
f t dt
U t
U t dt
U t

r t dt

< ≤ +
≤ + > =

>

=

= −

=

 (1.5) 

Consequently, r(t)dt simply represents the conditional probability of having a 
failure in the infinitesimal time interval (t,t+dt) given that the component has no 
failure before or at time t. So, the value of the failure rate at time t is a risk 
measure to have suddenly a failure just after time t. 
By integration, relation (1.4) gives: 

 0

( )

( )

t

r u du

U t e
−∫

=  (1.6) 
provided that we suppose that U(0)=1. 
From the last relation, it is clear that any non-negative function can be a failure 
rate if the following two conditions are satisfied: 
-  the function r is integrable on the positive half real line, 

-  
0

( ) .r u du
∞

= ∞∫   (1.7) 

The mean lifetime T is just the mean for the d.f. F. 
By integration by parts, it is possible to show that 

 
0

( )T U t dt
∞

= ∫  (1.8) 

and similarly if the variance 2σ exists: 

 2

0
2 ( )tU t dtσ

∞
= ∫  (1.9) 

 
1.2 Classification Of Failure Rates 
 
The first classification of failure rate types was given by Barlow and Proschan 
(1965) with the following definition. 
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Definition 1.3 There are three types of failure rates: 
(i)    increasing failure rate type (in short IFR) iff 
 1 2 1 2 1 2, : ( ) ( )t t t t r t r t∀ < ⇒ < , (1.10) 
(ii)   decreasing failure rate type (in short DFR) iff 
 1 2 1 2 1 2, : ( ) ( )t t t t r t r t∀ < ⇒ > , (1.11) 
(iii)  constant failure rate type (in short CFR) iff 
 1 2 1 2 1 2, : ( ) ( )t t t t r t r t∀ < ⇒ = . (1.12) 
 
In the last case, let us write ( )r t λ= ; then relation (1.6) gives: 
 ( ) , 0tU t e tλ−= ≥  (1.13) 
so that the d.f. of T is the negative exponential distribution of parameter λ  (see 
Chapter 1, section 5.5). 
Later Barlow and Prochan (1965) refine this classification with the following 
definition. 
 
Definition 1.4  (i)  A failure rate is of increasing failure rate average (in short IFRA) type 
(respectively of decreasing failure rate average (in short DFRA) type) iff the function 

[ )
0

1 ( ) , 0,
x

x r t dt x
x

∈ ∞∫  is increasing (respectively decreasing).  

(ii)   A failure rate is of new better than used (in short NBU) type (respectively of 
old better than used (in short OBU) type) iff 
 ( ) ( ) ( ) ( ), , 0.U x y U x U y x y+ ≤ ≥ ∀ >  (1.14) 
 
The meaning of these last two types is simple; for the OBU type, for example, we 
can write inequality (1.13) in the form: 

 ( )( )
( )

U x yU x
U y

+
≥  (1.15) 

or 

 ( )( )
( )

P T x yP T x
P T y

> +
> ≥

>
 (1.16) 

and finally 
 ( ) ( ),P T x P T x y T y> ≥ > + >  (1.17) 
this last relation meaning that, given the event {T>y}, the conditional probability 
of the event {T>x+y} is always smaller than the unconditional probability of the 
same event for y=0. In other terms, the fact of working up to time x always 
implies a wear phenomenon called aging. 
Let us mention that it is possible to show (Barlow and Proschan (1965)) that the 
following inclusions are true: 

 
,

.
IFR IFRA NBU
DFR DFRA OBN

⊂ ⊂
⊂ ⊂

 



 
 
 
 
 
 
338                                                                                                             Chapter 8 

Moreover, these inclusions are strict. 
The general shape of a failure rate is the “bathtub” with three periods: in the 
beginning, it is of type DFR, then there is a time interval in which it is of 
exponential type and finally in a third and later period, of IFR type: 
 

 
Figure 1.1: “Bathtub” shape of a failure rate 

 
1.3 Main Distributions Used In Reliability 
 
Referring to section 5 of Chapter 1, we will give the principal distributions used 
in reliability theory, together with the value of the failure rate and its type, if any. 
 
(i)      Poisson distribution of parameter λ ;  
(ii)    Gamma distribution 

 
1

1
( , ),  ( ) ;

r t

r u

t

t er r t
u e du

λ

λ
γ λ

− −

∞ − −
=
∫

 (1.18)  

(iii)    Weibull distribution of parameters , ,λ β   

 ( ) 1( )r t t βλβ λ −= ( 1: ,  1: ,  1:IFR DFR EXPβ β β> < = ); (1.19) 
(iv)   log-normal distribution of parameters , ,μ σ   

 
2 2

2 2

(ln ) / 2

(ln ) / 2
( ) ;

t

u

t

er t
et du

u

μ σ

μ σ

− −

− −∞
=

∫
 (1.20) 

(v)   the truncated normal law of parameter ( , )μ σ for which the density is 
defined as  
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2

2

2

2

( )
2

( )
0

2

1 1( ) ' ,
2

1 ,
2

t

t

tf t e
kk

k e dt

μ
σ

μ
σ

μ
σ σσ π

μ
σσ π

−
−

−
−

−∞

⎛ ⎞−⎛ ⎞= = Φ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞= = Φ −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∫
 (1.21) 

Φ  being defined in Chapter 1 as the distribution function of an N(0,1) r.v. 
The failure rate has the value 

 

2

2

2

2

( )
2

( )
2

'
( ) .

t

t

t

t
er t

t
e du

μ
σ

μ
σ

μ
σ
μσ

σ

−
−

−
−∞

⎛ ⎞−⎛ ⎞Φ⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟= =

−⎛ ⎞⎜ ⎟Φ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠∫
 (1.22) 

 
1.4 Basic Indicators Of Reliability 
 
Generally speaking, let us suppose now that the considered component is 
repairable, that is to say that if there is a failure at time t, we can repair the 
component using a random time Y and that after reparation, the component will 
start again with the same failure rate as before the reparation. This is the concept 
of minimal reparation. 
The distribution function G of the repair time Y is called the maintainability 
function and the equivalent of the failure rate the repair rate function noted s, so 
that: 

 

0

( )

'( )( ) ,
1 ( )

( ) 1 .

t

s u du

G ts t
G t

G t e
−

=
−

∫
= −

 (1.23) 

The effect of considering possible reparations implies that we can now introduce 
a two-state system with as state space { }0,1 , these two states representing 
respectively working and repair states.  
Now the reliability system can have transition from one state to the other one: at 
time 0, the system is in the operating state or state 1 or up state; at the time of the 
first failure 1T , it goes into state 0 or down state for a time 1Y  and so on. 
The time evolution of the system S is thus theoretically given by the sequence 
{ }1 1, ,..., , ,...n nT Y T Y  and from now on, let Z(t) represent the state of the considered 
system at time t. 
 
Definition 1.5 The basic indicators of reliability are: 
(i)      the mean time to failure (MTTF) :MTTF=E(T), 
(ii)     the mean time to repair (MTTR):MTTR=E(Y), 
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(iii)    the point-wise (or instantaneous) availability: ( ( ) 1)P Z t = , 
(iv)    the steady-state availability: lim ( ( ) 1)

t
A P Z t

→∞
= = , 

(v)    the average availability on the interval [t,t+u]: 

  1( , ) ( ) ,
t u

t
A t t u A u du

u
+

+ = ∫  (1.24) 

(vi)   the limit average availability on the interval [t,t+u]: 

  
0

1( , ) lim ( ) .
t

t
A t t u A u du

t→∞
+ = ∫  (1.25) 

 
1.5 Complex and Coherent Structures 
 
In general, a structure is composed of several simple components and the event 
failure of this complex structure depends on the way these components are 
working. Theoretically, this is given with the so-called structure function. 
Let us suppose that all the n components of the complex structure C are simple, 
so that, for each i=1,…,n,  

 
1, (operating or up state),

( )
0, (failed or down state).i ix x t
⎧

= = ⎨
⎩

 (1.26) 

The state x of the structure C at time t, is given by 

 1

1, ( up state),
( ) ( ( ), , ( ))

0, (down state),nx t x t x tψ
⎧

= = ⎨
⎩

…  (1.27) 

where the function 
 { } { }: 0,1 0,1nψ  (1.28) 
is called the structure function of C. 
Let us now give the following definitions. 
 
Definition 1.6 The complex component has a monotone structure iff 

 1 1, ( , , ) ( , , ), 1, , ,
(0, ,0) 0, (1, ,1) 1.

i i n nx y x x y y i nψ ψ
ψ ψ

≤ ⇒ ≤ =
= =

… … …
… …

 (1.29) 

 
Definition 1.7 A component i (i=1,...,n) of a complex system is irrelevant iff the 
structure function is constant in ix ; otherwise, this component is called relevant.  
 
Definition 1.8 The complex component has a coherent structure iff it is 
monotone and each component is relevant.  
 
Particular cases 
(i)    A series structure functions iff each component does. 
(ii)   A parallel structure functions if at least one component does. 
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(iii)  A k-out-of n structure functions iff at least k of the n components function. 
 
For these three types of structure, the structure functions are successively given 
by: 

(i) ( ) ( )1 1,...,
1

,..., min ,
n

n i ii n
i

x x x xψ
=

=

= =∏   (1.30) 

(ii) ( ) ( )1 1,...,
1

,..., max ,
n

n i ii n
i

x x x xψ
=

=

= =   (1.31) 

(iii) ( ) 1
1

1

1, ,
,...,

0, .

n

i
i

n n

i
i

x k
x x

x k
ψ =

=

⎧
≥⎪⎪= ⎨

⎪ <
⎪⎩

∑

∑
  (1.32) 

 
Remarks 1.1 (i)  Barlow and Proschan (1965) have proved that for any coherent 
structure, we have the intuitive result 

 ( )1
1 1

,..., .
nn

i n i
i i

x x x xψ
= =

≤ ≤∏  (1.33) 

(ii)  If all the components are independent and if ( 1,..., )iU i n=  is the reliability 
function of component i, then, we have for a series system: 

 
1

( ) ( ),
n

i
i

U t U tψ
=

=∏  (1.34) 

for a parallel system: 

 
1

( ) 1 (1 ( )),
n

i
i

U t U tψ
=

= − −∏  (1.35) 

and for a k-out-of n system: 

 ( ) ( ( )) (1 ( )) ( for ( ) ( ), 1,..., ).
n

i n i
i

i k

n
U t U t U t U t U t i n

iψ
−

=

⎛ ⎞
= − = =⎜ ⎟

⎝ ⎠
∑  (1.36) 

 
Example 1.1 Let us consider a complex system for which component i (i=1,…,n) 
has a negative exponential distribution of parameter ( 1,..., )i i nλ = . 
If the structure is a series structure, it follows from result (1.34) that: 

 1

1

( )

n

i
ii

tn
t

i

U t e e
λ

λ
ψ

=

⎛ ⎞
⎜ ⎟−⎜ ⎟− ⎝ ⎠

=

⎛ ⎞∑⎜ ⎟= =⎜ ⎟⎜ ⎟
⎝ ⎠

∏  (1.37) 
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and so, this structure has also a negative exponential distribution whose 

parameter 
1

n

i
i

λ λ
=

=∑ . 

Moreover as  

 1 , 1,..., ,i
i

T i n
λ

= =  (1.38) 

we have: 

 
1

1 1 ,
n

i iT T=

=∑  (1.39) 

 
a result showing that MTTF for the complex structure is given by the harmonic 
mean of the MTTF of all the n components. 
If all the components have the same reliability function, this last result gives: 

 1 .TT
n

=  (1.40) 

 
Example 1.2 Let us consider the redundant structure formed by a complex 
structure composed of n identical components in parallel, all having a negative 
exponential reliability function of parameter λ . From result (1.35), we get: 
 ( ) 1 (1 ) ,t nU t e λ

ψ
−= − −  (1.41) 

and so from relation (1.4): 

 
1(1 )( ) ,

1 (1 )

t n
t

t n

er t n e
e

λ
λ

ψ λλ
− −

−
−

−
=

− −
 (1.42) 

proving that here the failure rate is time dependent.  
It is not difficult to show that: 

 1

1 ( ) ,

0 ( ) ( ) ,

1( ) .
1

n

t

t

n r t

t r t n t

net r t
e

ψ

ψ

λ

ψ λ

λ

λ λ

λ λ

−

−

−

> ⇒ <

→ ⇒

−
→∞⇒ →

−

∼

∼

 (1.43) 

 
These last results show the effect of redundancy, which adds to a simple negative 
exponential component, n−1 supplementary components in parallel to improve 
the reliability. 
This effect is important at the beginning and of course is time decreasing with 
time t to converge toλ . 
For the MTTF, we have that: 

 
1

1 ,
n

k
T T

kψ
=

= ∑  (1.44) 
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and so the ratios of the MTTF are given for example by : 
 

N 1 2 3 4 
MTTF ratio 1 1.5 1.83 2.08

Table 1.1: example of MTTF 
 
This clearly shows that the effect of redundancy is not proportional to the number 
of added components. 
 
2. STOCHASTIC MODELLING IN RELIABILITY 
THEORY 
 
2.1 Maintenance Systems 
 
In the last subsection, result (1.34) shows that for a series structure, the reliability 
function is highly decreasing with the number of components. 
However, if the components are repairable, it is possible to interrupt the system 
momentarily during the reparation of the failed component and then to reinsert 
the component in the system and so on. 
For such a possibility, one can construct a stochastic model (Mohan et al (1962)) 
to compute the main indicators given in section 1.4. 
Let us assume that all the n components are independent with negative 
exponential distributions, respectively with parameters 1,..., nλ λ , and that the 
repair time for component i (i=1,…,n) has a negative exponential distribution of 
parameter iμ . All the repair times are also independent and of other and of on the 
working times of the n components. 
Moreover there is no time loss to replace the repaired components in the system.  
The evolution of the system can be seen as a successive sequence of working and 
repair times. 
For example for n=1, the random sequence 
 ( )1 1 2 2, , , ,..., , ,...n nX Y X Y X Y  (2.1) 
represents successively the working and repair times and if we introduce a two-
state set {0,1}, so that, at time t, the system state Z(t) is in state 1 if it is operating 
and in state 0 if it is under repair, then the process (2.1) is a continuous Markov 
process where the transition matrix of the imbedded Markov chain is given by: 

 
0 1
1 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

 (2.2) 

and for which the conditional sojourn times are given by: 
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10

01

0, 0,
1 0 : ( )

1 , 0,

0, 0,
0 1: ( )

1 , 0.

t

t

t
F t

e t

t
F t

e t

λ

μ

−

−

<⎧
= ⎨ − ≥⎩

<⎧
= ⎨ − ≥⎩

 (2.3) 

With the notation of Chapter 3, we have here: 

 10 1 01 0
1 1

1 1, ,b bη η
λ μ

= = = =  (2.4) 

and for the stationary distribution of the imbedded  Markov chain: 

 0 1
1 .
2

π π= =  (2.5) 

We are interested in the following two transition probabilities: 

 10

01

( ) ( ( ) 0 (0) 1),

( ) ( ( ) 1 (0) 0).

t P Z t Z

t P Z t Z

φ

φ

= = =

= = =
 (2.6) 

They are given by the system (10.3) of Chapter 4. 
For n=2, using Laplace transforms, it is possible to show that 

 

( )
10

( )
01

( ) (1 ),

( ) .

t

t

t e

t e

λ μ

λ μ

λφ
λ μ
μ μφ

λ μ λ μ

− +

− +

= −
+

= +
+ +

 (2.7) 

The asymptotic behaviour is given by relation (10.8) of Chapter 3, or here 
directly from result (2.7), 

 
10

01

lim ( ) ,

lim ( ) .

t

t

t

t

λφ
λ μ
μφ

λ μ

→∞

→∞

=
+

=
+

 (2.8) 

As here, we have: 

 1 1, ,MTTF MTTR
λ μ

= =  (2.9) 

relations (2.8) take the form 

 
10

01

lim ( ) ,

lim ( ) .

t

t

MTTRt
MTTF MTTR

MTBFt
MTTF MTTR

φ

φ

→∞

→∞

=
+

=
+

 (2.10) 

 
Remark 2.1 a) Mohan et al (1962) also solved the case of a series system with n 
components, independent with negative exponential distributions, respectively 
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with parameters 1, , nλ λ… , and that the repair time for component i (i=1,…,n) has 
a negative exponential distribution of parameter μ . 
In terms of semi-Markov modelling, this means that the state process 
( )( ), 0Z t t ≥  has as state space the set {1,…,n,Op} where state i (i=1,…,n), means 
that the system is in the failure state due to component i, and state Op that the 
system is operating at time t. 
With the same semi-Markov approach, it is possible to show that: 

 

( )

( )

( )

0

1

( ) (1 ), 1,..., ,

( ) ,

( )( 1 ( )) ,

.

ti
i

t

Op

t
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n

t e i n

et

et t

λ μ

λ μ

λ μ

λ
φ

λ μ
μ λφ

λ μ
λ λφ φ

λ μ
λ λ λ

− +

− +

− +

= − =
+

+
=

+

−
= − =

+
= + +

 (2.11) 

And consequently, the asymptotic behaviour is given by the following relations: 

 
( )

0

lim ( ) , 1,..., ,

lim ( ) ,

( ) .

i
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t

Opt

t i n

et

t

λ μ

λ
φ

λ μ
μ λφ

λ μ
λφ

λ μ

→∞

− +

→∞

= =
+

+
=

+

=
+

 (2.12) 

b) For the general stochastic model of Mohan et al (1962), there exists a simple 
form of the asymptotic behaviour given by the following expressions: 

 

1

1

1
0

1

1lim ( ) , 1,..., ,
1

1lim ( ) ,
1

( ) .
1
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Op nt
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 (2.13) 
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2.2. The Semi-Markov Model For Maintenance Systems 
 

Let us consider a complex system having as state space the set I={1,…,m} with 
m finite. 
The set I is partitioned in two non-void subsets U and D where U is the set of all 
functioning or up states and D all the failed or down states and at any time t, the 
considered system is in one of these states and transitions are of course possible. 
Any duration in one of the states of U is an operating time and any duration in a 
state of D a non-operating time; a transition from a state of U to a state of D 
means that there is a breakdown and a transition from a state of D to a state of U 
may be seen as the end of a time of reparation. 

The basic assumption is that the process { }( ), 0Z Z t t= ≥ is a semi-Markov 
process with kernel Q. 

As in section 2.1, the minimal case is considered with the semi-Markov process 
with { }0,1I =  where state 0 means breakdown state and state 1 operating state. 

As before the main reliability indicators are: 
 
(i)    The availability functions defined as: 

 
( )
( )

( ) ( ) (0) , ,

( , ) ( ) ( ) , ,
i

i

A t P Z t U Z i i I

A s t P Z t U Z s i i I

= ∈ = ∈

= ∈ = ∈
 (2.14) 

respectively in the homogeneous and the non-homogeneous case. 
If as in Chapter 3, we define by ijφ  the transition probability functions for the Z-
process, for both the cases, we get: 

 
( ) ( ), ,

( , ) ( , ), .

i ij
j U

i ij
j U

A t t i I

A s t s t i I

φ

φ
∈

∈

= ∈

= ∈

∑

∑
 (2.15) 

If, in the homogeneous case, the process is ergodic, we can also define the 
asymptotic availability as: 

 ( ) lim ( ) .j j
i it j U k k

k I

A A t
π η
π η→∞

∈
∈

∞ = = ∑∑
 (2.16) 

 
(ii)    The reliability  functions giving the probability that the system is always  
working on the time interval [0,t], 

 
( ) ( ( ) (0) ), ,

( , ) ( ( ) ( ) ), .
i

i

R t P Z t U Z i i U

R s t P Z t U Z s i i U

= ∈ = ∈

= ∈ = ∈
 (2.17) 
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To compute these probabilities, we will now work with another kernel DQ for 
which all the states of the subset D are changed into absorbing states, meaning 
that: 

 
, , ,

( ) , , ,

D
ij ij

D
ij ij

p i D j I

p s i D j I

δ

δ

= ∈ ∈

= ∈ ∈
 (2.18) 

respectively for the homogeneous and the non-homogeneous case. 
Doing so, in the two cases, we get: 

 
( ) ( ), ,

( , ) ( , ), ,

D
i ij

j U

D
i ij

j U

R t t i U

R s t s t i U

φ

φ
∈

∈

= ∈

= ∈

∑

∑
 (2.19) 

where of course, in both the homogeneous and the non-homogeneous cases, the 
matrix DΦ gives the probabilities transition for the semi-Markov process of 
kernel DQ . 
 
(iii)    the maintainability functions giving the probability that the system is down 
at time 0 in the homogeneous case and at time s in the non-homogeneous case 
and that the system will leave the set D within the time t, 

 
( ]( )
( ]( )

( ) 1 ( ) , 0, ,

( , ) 1 ( ) , , .

M t P Z u D u t

M s t P Z u D u s t

= − ∈ ∀ ∈

= − ∈ ∀ ∈
 (2.20) 

To compute these probabilities, we will now work with another kernel UQ for 
which all the states of the subset U are changed in absorbing states, meaning that: 

 
, , ,

( ) , , .

U
ij ij

U
ij ij

p i U j I

p s i U j I

δ

δ

= ∈ ∈

= ∈ ∈
 (2.21) 

Doing so, respectively, we get: 

 
( ) ( ), ,

( , ) ( , ), ,

U
i ij

j U

U
i ij

j U

M t t i D

M s t s t i D

φ

φ
∈

∈

= ∈

= ∈

∑

∑
 (2.22) 

where of course, the matrix UΦ gives the probabilities transition for the semi-
Markov process of kernel UQ . 
 
In conclusion, we see that the computing of the main indicators for the semi-
Markov model is simple from our numerical results given before. 
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2.3 A Classical Example 
 
In this part the example given in Barlow and Proschan (1965) page 120 will be 
developed. It is supposed that there are two machines (computers in the original 
example) working in parallel. The system is formed by nine states. With three of 
these states { }5,7,9D =  the system is down, in the other six the system can 
work. 
The MC that describes the system is given in Table 2.1. 
 

0 02 te λ−  0 0 0 
021

2

te λ−−  0 
021

2

te λ−−  0 

0 0 e λγ−  0 0 0 0 0 1 e λγ−−  

0 0 0 02 te λ−  0 
021

2

te λ−−  0 
021

2

te λ−−  0 

e λγ−  0 0 0 1 e λγ−−  0 0 0 0 
0 0 0 0 0 1 0 0 0 

0 0 
θ

λ θ+
 0 0 0 

λ
λ θ+

 0 0 

0 0 0 0 0 
1
2

 0 
1
2

 0 

θ
λ θ+

 0 0 0 0 0 
λ

λ θ+
 0 0 

0 0 0 0 0 0 0 1 0 
Table 2.1: embedded MC 

 
The embedded MC for the homogeneous case is the same as in Table 2.1 and 
with parameter values: 

 1 35
λ
= ;   1 1

6θ
= ; 1γ = ;  0 24t = . (2.23) 

In the non-homogeneous case the parameters are functions of time; more 
precisely: 

 1 40, ,30
λ
= … ;   1 1 1, ,

8 4θ
= ;  0.4, ,1.2γ = … ;  0 30, ,20t = …  (2.24) 

where: 
1
λ

  is the mean time to failure. In the non-homogeneous case, 1
λ

is a decreasing 

function of the time in the sense that it goes from 40 to 30 in 11 steps. 
1
θ

 is the mean time to perform emergency repair. In the non-homogeneous case 

1
θ

 is an increasing function that goes from 1 1to 
8 4

 in 11 steps.  
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γ  is the time to perform preventive maintenance. In the non-homogeneous case 
it is an increasing function that goes from 0.4 to 0.12 in 11 steps. 

0t  is the scheduled preventive maintenance period. In the non-homogeneous case 
it is a decreasing function that goes from 30 to 20 in 11 steps. 
The following tables report the availability, reliability and maintainability 
functions both in the homogeneous and the non-homogeneous cases.  
Each column of the tables reports the starting state. The rows represent time. In 
the homogeneous case the rows give probabilities after one period, two periods 
and so on. In the non-homogeneous case there are many results and, in our 
opinion, it was too tedious to report all of them. So, the first element of each row 
gives the starting time and the evaluation time. 
 

 1S  2S  3S  4S  5S  6S  7S  8S  9S  
1 1 0.9957 1 0.9951 0.0101 0.9997 0.0718 0.9994 0.0914 
2 0.9998 0.9948 0.9998 0.9939 0.1226 0.9995 0.1511 0.9993 0.1397 
3 0.9997 0.9944 0.9997 0.9944 0.2309 0.9991 0.2338 0.9993 0.2307 
4 0.9996 0.9933 0.9995 0.9938 0.2968 0.9988 0.2778 0.9992 0.2684 
5 0.9994 0.9913 0.9994 0.9925 0.349 0.9985 0.3444 0.999 0.2693 
6 0.9992 0.9902 0.9992 0.9913 0.4404 0.9981 0.381 0.9989 0.4194 
7 0.9989 0.9874 0.999 0.99 0.4454 0.9978 0.5317 0.9987 0.4301 
8 0.9985 0.9882 0.9986 0.9856 0.5283 0.9974 0.6241 0.9981 0.5139 
9 0.9982 0.9874 0.9982 0.9859 0.6324 0.9973 0.6653 0.9976 0.6183 
10 0.9979 0.9844 0.9979 0.9855 0.6841 0.9972 0.7126 0.9972 0.706 
11 0.9974 0.9856 0.9974 0.9853 0.791 0.997 0.8027 0.9968 0.8289 

Table 2.2: Homogeneous Availability Function 
 

 1S  2S  3S  4S  5S  6S  7S  8S  9S  
0-1 1 0.9988 1 0.998 0.0219 0.9995 0.1001 0.9999 0.0366 
0-4 0.9998 0.9948 0.9997 0.9934 0.285 0.9991 0.2389 0.9993 0.3555 
0-8 0.9983 0.9929 0.9986 0.9932 0.6412 0.9981 0.6565 0.9983 0.7292 

0-11 0.9964 0.9926 0.996 0.9925 0.9302 0.9963 0.9145 0.996 0.9063 
1-2 1 0.9972 1 0.9984 0.074 0.9993 0.1534 0.9997 0.1514 
1-5 0.9995 0.9975 0.9996 0.9948 0.2726 0.9988 0.3956 0.9987 0.4324 

1-11 0.9962 0.9923 0.996 0.9925 0.8983 0.9968 0.8969 0.9962 0.899 
3-4 1 0.9969 1 0.9972 0.2086 0.9997 0.1335 0.9998 0.0703 

3-11 0.9964 0.9931 0.9961 0.9933 0.9085 0.9973 0.8972 0.9964 0.9269 
4-8 0.9987 0.9935 0.9994 0.9943 0.4083 0.9982 0.4683 0.9982 0.5145 

4-11 0.9962 0.9947 0.9959 0.9922 0.8662 0.9972 0.8927 0.9961 0.8842 
5-6 1 0.9941 1 0.9988 0.105 0.9998 0.1782 0.9999 0.1118 

5-11 0.9966 0.9945 0.9963 0.9943 0.8486 0.997 0.8788 0.9962 0.8917 
6-7 1 0.9951 1 0.9959 0.2093 0.999 0.2725 0.9996 0.1379 

6-11 0.9959 0.9963 0.9963 0.9911 0.8157 0.9972 0.8351 0.9962 0.8564 
7-9 0.9994 0.9881 0.9995 0.9916 0.5369 0.9979 0.53 0.9977 0.2606 

7-11 0.9958 0.9923 0.9964 0.9931 0.8029 0.9968 0.8215 0.9963 0.8427 
9-11 0.9959 0.9879 0.9984 0.99 0.784 0.9976 0.7754 0.9973 0.7889 
10-11 1 0.9829 1 0.9823 0.7812 0.9941 0.7688 0.9942 0.7542 

Table 2.3: Non-Homogeneous Point-wise Availability Function 
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 1S  2S  3S  4S  5S 6S  7S 8S  9S  

1 1 0.998 1 0.9983 0 0.9998 0 0.9998 0 
2 1 0.995 1 0.9948 0 0.9995 0 0.9992 0 
3 0.9999 0.9911 0.9999 0.9937 0 0.9992 0 0.999 0 
4 0.9997 0.991 0.9998 0.9928 0 0.9988 0 0.9986 0 
5 0.9995 0.9903 0.9997 0.9891 0 0.9982 0 0.9984 0 
6 0.9992 0.989 0.9995 0.9885 0 0.9981 0 0.9983 0 
7 0.999 0.9871 0.9993 0.9864 0 0.9976 0 0.9977 0 
8 0.9986 0.9832 0.999 0.9823 0 0.9968 0 0.9971 0 
9 0.9982 0.9812 0.9987 0.9807 0 0.9967 0 0.9967 0 
10 0.9976 0.9776 0.9982 0.9781 0 0.9961 0 0.9961 0 
11 0.997 0.9765 0.9977 0.9764 0 0.9955 0 0.9954 0 

Table 2.4: Homogeneous Reliability Function 
 

 1S  2S  3S  4S  5S 6S  7S 8S  9S  
0-1 1 0.9977 1 0.9991 0 0.9995 0 0.9999 0 
0-4 0.9997 0.9909 0.9998 0.9936 0 0.9984 0 0.9992 0 
0-8 0.9976 0.988 0.9979 0.9874 0 0.9974 0 0.9973 0 

0-11 0.9921 0.9802 0.9926 0.9807 0 0.9933 0 0.993 0 
1-2 1 0.9976 1 0.9982 0 0.9997 0 0.9995 0 
1-5 0.9997 0.9922 0.9997 0.9938 0 0.999 0 0.9989 0 

1-11 0.9927 0.9797 0.9927 0.9805 0 0.9928 0 0.9919 0 
3-4 1 0.9993 1 0.9979 0 0.9998 0 0.9996 0 

3-11 0.9934 0.9806 0.9933 0.9806 0 0.9932 0 0.9934 0 
4-8 0.9992 0.9919 0.9987 0.9898 0 0.998 0 0.998 0 

4-11 0.9935 0.98 0.9935 0.9804 0 0.9939 0 0.9934 0 
5-6 1 0.9972 1 0.9952 0 0.9987 0 0.9974 0 

5-11 0.9939 0.981 0.9937 0.982 0 0.9929 0 0.994 0 
6-7 1 0.9971 1 0.9938 0 0.9988 0 0.9992 0 

6-11 0.9946 0.981 0.9941 0.9822 0 0.994 0 0.9936 0 
7-9 0.9987 0.9921 0.9995 0.9924 0 0.9965 0 0.9987 0 

7-11 0.9943 0.9815 0.9947 0.9823 0 0.9941 0 0.993 0 
9-11 0.9971 0.9834 0.9979 0.9838 0 0.9947 0 0.9945 0 
10-11 1 0.9821 1 0.9821 0 0.9944 0 0.9939 0 

Table 2.5: Non-Homogeneous Reliability Function 
 

 1S  2S  3S 4S 5S  6S 7S  8S 9S  
1 1 1 1 1 0.1384 1 0.0405 1 0.06 
2 1 1 1 1 0.2119 1 0.1071 1 0.2089 
3 1 1 1 1 0.222 1 0.1983 1 0.3333 
4 1 1 1 1 0.3097 1 0.2815 1 0.4281 
5 1 1 1 1 0.4346 1 0.3702 1 0.4716 
6 1 1 1 1 0.555 1 0.4738 1 0.4933 
7 1 1 1 1 0.6623 1 0.5361 1 0.5148 
8 1 1 1 1 0.6841 1 0.6028 1 0.6627 
9 1 1 1 1 0.7577 1 0.6577 1 0.7199 
10 1 1 1 1 0.8174 1 0.7178 1 0.8112 
11 1 1 1 1 0.8345 1 0.789 1 0.8481 

Table 2.6: Homogeneous Maintainability Function 
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 1S  2S  3S 4S 5S  6S 7S  8S 9S  

0-1 1 1 1 1 0.1384 1 0.0405 1 0.06 
0-4 1 1 1 1 0.2119 1 0.1071 1 0.2089 
0-8 1 1 1 1 0.222 1 0.1983 1 0.3333 

0-11 1 1 1 1 0.3097 1 0.2815 1 0.4281 
1-2 1 1 1 1 0.4346 1 0.3702 1 0.4716 
1-5 1 1 1 1 0.555 1 0.4738 1 0.4933 

1-11 1 1 1 1 0.6623 1 0.5361 1 0.5148 
3-4 1 1 1 1 0.6841 1 0.6028 1 0.6627 

3-11 1 1 1 1 0.7577 1 0.6577 1 0.7199 
4-8 1 1 1 1 0.8174 1 0.7178 1 0.8112 

4-11 1 1 1 1 0.8345 1 0.789 1 0.8481 
5-6 1 1 1 1 0.0439 1 0.1272 1 0.0148 

5-11 1 1 1 1 0.3685 1 0.3928 1 0.3081 
6-7 1 1 1 1 0.6952 1 0.7669 1 0.6859 

6-11 1 1 1 1 0.9312 1 0.9556 1 0.9951 
7-9 1 1 1 1 0.1341 1 0.1304 1 0.0183 

7-11 1 1 1 1 0.3636 1 0.3752 1 0.3966 
9-11 1 1 1 1 0.8902 1 0.9444 1 0.9189 
10-11 1 1 1 1 0.0253 1 0.0735 1 0.0108 
Table 2.7: Non-Homogeneous Maintainability Function 

 
3 STOCHASTIC MODELLING FOR CREDIT RISK 
MANAGEMENT 
 
3.1 The Problem Of Credit Risk 
 
At the present time, the credit risk problem is one of the most important 
contemporary problems and has been developed in the financial literature both 
from theoretical and practical points of view. It consists in computing the default 
probability of a firm.  
Banks and other financial intermediaries are the type of firms that are the most 
concerned with evaluation of credit risk. There is a very wide range of literature 
on credit risk models (see for example, Bluhm et al (2002), Crouhy et al (2000)).  
In the 1990s, Markov models were introduced to study credit risk problems. 
Many important papers on these kinds of models were published (see Jarrow et al 
(1997), Nickell et al (2000), Israel et al (2001), Hu et al (2002)), mainly for 
solving the problem of evaluation of transition matrices. In the paper by Lando 
and Skodeberg (2002) some problems regarding the duration of the transition are 
explored, but only recently models in which the randomness of time in the state 
transitions have been constructed (see D’Amico et al (2004), (2005a), (2005b), 
Vasileiou and Vassiliou (2006)). 
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By means of the semi-Markov model, it is possible to generalise the Markov 
models introducing the randomness of time for transitions between the states. 
Furthermore we think that the credit risk problem can be seen as a reliability 
financial model for the firm under study for which we would like to compute the 
default probability (D’Amico et al (2004), (2005a), (2005b)). 
 
3.2 Construction Of A Rating Using The Merton Model For 
The Firm 
 
In this section, we will develop an elaboration of a rating model using the 
classical Merton model for the firm (1974) and used in Creditmetrics, initialised 
by J-P Morgan as a sequel of the Riskmetrics computer program dedicated to the 
VaR methods. 
In the Merton model (1974), the value V of the firm is modelled with a Black and 
Scholes stochastic differential equation with trend μ  and instantaneous volatility 
σ  so that its value time at t is given by 
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0V being the value of the firm at time 0 and [ ]( )( ), 0,W W t t T= ∈  a standard 

Brownian motion defined on the filtered probability space ( ), , ( ), .t PΩ ℑ ℑ  
If defV is the threshold beyond which the firm defaults, called the threshold 
default, the probability defP  that the company defaults before time t is given by: 
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As, for all positive t, ( ) /W t t  has a normal distribution, we get: 
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. (3.3) 

So, if we fix the value of defP , we can compute the corresponding value of defV  
using the quantiles of the normal distribution. 
Let us suppose that we fix the default probability defP  to the corresponding 
quantile CCCZ . 
This means that if Z is below or equal to CCCZ , with Z defined by: 
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we get: 
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 (3.5) 

On the contrary, if the value of Z is larger than CCCZ but before the quantile BZ , 
the rating given to the firm is noted CCC and so on. So we obtain a scale of 
increasing thresholds represented by: 
 CCC B BB BBB A AA AAAZ Z Z Z Z Z Z< < < < < < , (3.6) 
assigning a credit rating or grade to firms as an estimate of their creditworthiness.  
If Z represents the observed value of Z for the considered firm, the scale used 
here is the rating use by the famous credit rating agencies Standard & Poor’s and 
Moody’s given below: 
 

Zobs value notation
  

Zobs<ZCCC default 
ZCCC<Zobs<ZB CCC 
ZB<Zobs<ZBB B 

ZBB<Zobs<ZBBB BB 
ZBBB<Zobs<ZA BBB 
ZA<Zobs<ZAA A 

ZAA<Zobs<ZAAA AA 
ZAAA<Zobs AAA 

Table 3.1: rating agencies 
 
It is clear that the credit ratings depend on time t and also on the selection of the 
probabilities defP , ( ), ( ), ( ), ( ), ( ), ( ), ( )CCC B BB BBB A AA AAAP Z P Z P Z P Z P Z P Z P Z  
chosen by the credit rating agency.  
We can also compute the following probabilities: 
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and so: 
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Using relation (3.3), we get: 
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where CCC B BB BBB A AA AAAV V V V V V V< < < < < < are the firm values corresponding 
to the rating CCC B BB BBB A AA AAAZ Z Z Z Z Z Z< < < < < < and so: 
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 (3.10) 

All these relations show how the grades are time dependent, which is why we 
will now study the dynamics of ratings 
 
3.3 Time Dynamic Evolution Of A Rating  
 
3.3.1 Time Continuous Model  
 
In continuous time, the rating process is nothing else than the stochastic process 
defined by relation (3.4), 

{ }Z Z t Tt= ≤ ≤,0  (3.11) 
where the r.v. Zt  represents the credit rating at time t given by: 
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Here, the grade Zt represents exactly the value inside one of the classes defined 
above and no longer only the class. 
Using relation (3.1) to substitute the value of tV  in (3.12), we get: 
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As the standard Brownian process has stationary and independent increments 
(see Chapter 1, section 9, Definition 9.1), we also get: 
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or using relation (3.14): 
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the last equality coming from the normality of the increments of a standard 
Brownian motion. 
We can also write this last result in the form: 
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The corresponding density function is given by: 
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This last result is correct only for i ZCCC≥ . On the other hand, for i ZCCC< , 
the default state being considered as an absorbing state, we have necessarily for 
j i≥ : 

 ( ) 1.s tP Z j Z i≤ = =  (3.19) 
In conclusion, as the transition probability given by (3.17) depends on both s and 
t and not only on t− s, we just prove that the Z process is a non-homogeneous 
Markov process, introduced in Chapter 3. 
  
3.3.2 Discrete Continuous Model  
 
Let us define { }1,...,m  as the set of the m credit ratings ranked in increasing order 
with the Moody scale: 1= defD  (default),2=ZCCC,...,m=ZAAA. 
Except for the extreme classes, the rating classes defined below will now be 
represented by their centres as follows: 
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Let Z it = , i being a class centre different from 1; from result (3.17), we have 
that: 
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 (3.21) 

To get a discrete time, let us suppose that we give notations at times 0,u,2u,…,ku 
representing for example one year or a semester. Now transition probabilities 
become: 
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 (3.22) 

Of course, if Zku equals DefZ , we know from relation (3.19) that 
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 (3.23) 

Relations (3.21) and (3.22) define a sequence of probability transition matrices 
P(k), k=0,1,... with: 
 ( ) ( )ijk p k⎡ ⎤= ⎣ ⎦P  (3.24) 

and 
 1( ) ( 1 ), , 1,..., , 0,1,... .ij ku kup k P j Z j Z i i j m k+= − < ≤ = = =  (3.25) 
It follows that the credit rating process Z in discrete time Z=(Zku,k=0,1,...) is what 
we call a non-homogeneous Markov chain defined in Chapter 3. 
 Of course, in the very particular and unrealistic case where the probability 
transition matrices P(k), k=0,1,... are independent of t, the process in discrete 
time Z=(Zku,k=0,1,...,) is then a homogeneous Markov chain as defined in 
Chapter 2. 
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3.3.3 Example 
 
In real economic life, credit rating agencies play a crucial role; they compile data 
on individual companies or countries to estimate their probability of default, 
represented by their scale of credit ratings at a given time and also by the 
probability of transitions for successive credit ratings.  
A change in the rating is called a migration. 
Migration to a higher rating will of course increase the value of a company’s 
bond and decrease its yield, giving what we call a negative spread, as it has a 
lower probability of default, and the inverse is true with a migration towards a 
lower grade with consequently a positive spread. 
Here we have an example of a possible transition matrix for migration from one 
year to the successive one: 
 

 AAA AA A BBB BB B CCC D Total 
AAA 0.90829 0.08272 0.00736 0.00065 0.00066 0.00014 0.00006 0.00012 1 
AA 0.00665 0.9089 0.07692 0.00583 0.00064 0.00066 0.00029 0.00011 1 
A 0.00092 0.0242 0.91305 0.05228 0.00678 0.00227 0.00009 0.00041 1 
BBB 0.00042 0.0032 0.05878 0.87459 0.04964 0.01078 0.0011 0.00149 1 
BB 0.00039 0.00126 0.00644 0.0771 0.81159 0.08397 0.0097 0.00955 1 
B 0.00044 0.00211 0.00361 0.00718 0.07961 0.80767 0.04992 0.04946 1 
CCC 0.00127 0.00122 0.00423 0.01195 0.0269 0.11711 0.64479 0.19253 1 
D 0 0 0 0 0 0 0 1 1 

Table 3.2 : Example of transition matrix of credit ratings 
 
We clearly see that the probabilities of no migration, given by the elements of the 
principal diagonal, are the highest elements of the matrix but that they decrease 
with the poor quality of the rating. 
Here, we see for example that a company with rank AA has more or less nine 
chances out of ten to keep its rating next year, but it will move to rank AAA with 
only six chances in one thousand. 
On the other hand, a company with a CCC as rating will be in default next year 
with twenty chances out of a hundred. 
As a more real example, the next table gives the transition probability matrix of 
credit ratings of Standard & Poor’s for year 1998 (see ratings performance, 
Standard & Poor’s) for a sample of 4014 companies. 
Let us point out the presence of a “new” state called N.R. (rating withdrawn) 
meaning that for a company in such a state, the rating has been withdrawn and 
that this event does not necessarily lead to default the following year, thus 
explaining the last row of the above matrix. 
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Effec.  AAA AA A BBB BB B CCC D N.R. Total 
165 AAA 90.3 6.1 0 0.61 0 0 0 0 3.03 100 
560 AA 0.18 90 5.71 0.18 0 0 0 0 4.29 100 
1095 A 0.09 1.5 87.22 5.11 0.18 0 0 0 5.94 100 
896 BBB 0 0 2.79 84.93 4.46 0.67 0.22 0.34 6.59 100 
619 BB 0.32 0.2 0.16 5.33 75.44 5.98 2.75 0.65 9.21 100 
649 B 0 0 0.15 0.62 6.16 76.3 5.09 4.47 7.24 100 
30 CCC 0 0 3.33 0 0 20 33.3 36.67 6.67 100 
 N.R. 0 0 0 0 0 0 0 0 100 100 
4014            

Table 3.3: example with rating withdrawn 
 
Here, we see for example that companies in state AA will not be in default the 
next year but that 5.71 % of them will degrade to simple A and 18 % to a BBB 
and 0.18 will upgrade to an AAA. 
Under the assumption of a homogeneous Markov chain, we obtain the following 
results: 
 
 (i)    the probability that an AA company defaults after two years: 
P(2)(D/AA)=0.0018 ⋅ 0.0034=0.0006%, 
which is still very low. 
(ii)    the probability that a BBB company defaults in one of the next two years : 
This probability is given by: 

( / ;2) ( / ) ( / ) ( / )
( / ) ( / ) ( / ) ( / ) ( / ) ( / )

                      0.34%+(84.93% 0.34%)
+(4.46% 0.65%)+(0.67% 4.47%)+(0.22% 36.67%)
=0.77%.

P D BBB P D BBB P BBB BBB P D BBB
P BB BBB P D BB P B BBB P D B P CCC BBB P D CCC

= +
+ + +

= ⋅
⋅ ⋅ ⋅

 

(iii)   the probability for a company BBB to default between year 1 and year 2: 
Using the standard definition of conditional probability ( see Chapter 1) we get  
P(D at 2/non-def. at 1) = P(D at 2 & non-def. at 1)/ P(non-def. at 1) 
=(0.77%-0.34%)/(1-0.34%) 
=0.43%. 
 
Let us point out that these illustrative results are true under the homogeneous 
Markov chain model and moreover give similar results for all the companies of 
the panel in the same credit rating. 
In fact, in real life applications, credit rating agencies also study each company 
on its own account so that specific information is also determining for giving the 
final grade. 
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3.3.4 Rating And Spreads On Zero Bonds  
 
Let us first recall that a zero-coupon bond is a contract paying a known fixed 
amount called the principal, at some given future date, called the maturity date. 
So if the principal is one monetary unit and T the maturity date, the value of this 
zero-coupon at time 0 is given by: 
 (0, ) TB T e δ−=  (3.26) 
if δ is the considered constant instantaneous intensity of interest rate. 
Of course, the investor in zero-coupons must take into account the risk of default 
of the issuer. To do so, we consider that, in a risk neutral framework, the investor 
has no preference between the two following investments: 
 
(i) to receive almost certainly at time 1 the amount eδ as counterpart of the 
investment at time 0 of one monetary unit, 
(ii) to receive at time 1 the amount ( ) ( 0)se sδ + > with probability (1−p) or 0 with 
probability p, as counterpart of the investment at time 0 of one monetary unit, p 
being the default probability of the issuer. 
The positive quantity s is called the spread with respect to the non-risky 
instantaneous interest rate δ  as counterpart of this risky investment in zero-
coupon bonds. 
From the indifference given above, we obtain the following relation: 
 ( )(1 ) se p eδ δ += −  (3.27) 
or  
 1 (1 ) ,sp e= −  (3.28) 
 ln(1 );s p= − −  (3.29) 

 
s p

s p p

≈

≅ +

,

.1
2

2  (3.30) 

Let us now consider a more positive and realistic situation in which the investor 
can get an amount ,(0 1)α α< < if the issuer defaults at maturity or before. 
In this case, the expectation equivalence principle relation (3.27) becomes: 
 (1 ) ,se p e p eδ δ δα+= − +  (3.31) 
or 
 1 (1 ) .sp e pα= − +  (3.32) 
It follows that in this case the value of the spread satisfies the equation 

 1
1

s pe
p
α−

=
−

 (3.33) 

and so the spread value is 
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 1ln .
1

ps
p
α−

=
−

 (3.34) 

As above, using the Mac Laurin formula respectively of order 1 and 2, we obtain 
the two following approximations for the spread: 

 2

(1 ),
1

1(1 ) (1 ) .
1 2 1

ps
p

p ps
p p

α

α α

≈ −
−

⎛ ⎞
≈ − − −⎜ ⎟− −⎝ ⎠

 (3.35) 

 
4 CREDIT RISK AS A RELIABILITY MODEL 
 
4.1 The Semi-Markov Reliability Credit Risk Model 
 
As we already know, the credit risk problem can be seen as a reliability problem 
in which the rating process, carried out by the rating agency, gives a reliability 
degree of a firm bond and moreover, the default state can be seen as a down state 
and an absorbing state.  
From relations (2.15) and (2.19) it results that in this case the concept of 
reliability and availability coincide.  
We know that rating agencies like Standard & Poor’s, Moody’s or Fitch give 
each examined firm a rating. In the preceding subsections, we used the S&P 
simplified model giving eight kinds of ratings: 
 
 AAA, AA, A, BBB, BB, B, CCC, D, 
 
where the states are in decreasing order depending on the “reliability” of their 
debts, and the state D means default (for the precise definition of each state see 
Crouhy et al (2001)). 
In order to apply reliability models in a credit risk environment it is possible to 
consider, following S&P classification, the first seven states as “good” states and 
the D state as the only bad state and apply our semi-Markov reliability models to 
the credit risk problem.  
The state D will be an absorbing state, because once the state is reached, in the 
sense that the firm is not in position to pay its debts and so therefore defaults, it is 
not possible to exit from the state.  
Furthermore in this case we are interested only in the R(t) function; the A(t) and 
M(t) functions  are meaningless in this environment.  

( )iR t gives the probability that the system was always working up to the time t 
given that the system was in the working state i at time 0. 
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In this case the reliability model is substantially simplified and to get all the 
results that are relevant in the credit risk case, it suffices to solve the semi-
Markov evolution equation only once to get the following probabilities: 
1) ( )ij tφ and ( , )ij s tφ representing respectively the probabilities to be in the state j 
after a time t starting in the state i at time 0 in the homogeneous case and starting 
at time s in the state i in the non-homogeneous case. The semi-Markov 
environment takes into account the different probabilities of state changes during 
the permanence of the system in the same state (duration problem); 
2) ( ) ( )i ij

j U
R t tφ

∈

= ∑ and ( , ) ( , )i ij
j U

R s t s tφ
∈

= ∑ , representing respectively the 

probabilities that the system never goes into the default state in a time t in the 
homogeneous case and from  time s to time t in the  non-homogeneous one; 
3) 1 ( )iH t−  and 1 ( , )iH s t− , representing the probabilities that in a time interval 
t, in the homogeneous case, and from time s to time t, in the non-homogeneous 
case, no one new rating evaluation was done for the firm; 
4) ( )ij tϕ and ( , )ij s tϕ  representing the probabilities to get the rank j at the next 
rating if the previous state was i and not one rating evaluation was made up to the 
time t in the homogeneous case and from time s to time t in the non-
homogeneous one. In this way, for example, if the transition to the default state is 
possible and if the system doesn’t move for a time t from the state i, we know the 
probability that in the next transition the system will go to the default state. 
They are defined by the following relations: 

 
( )

( ) ,
1 ( )

ij ij
ij

i

p Q t
t

H t
ϕ

−
=

−
 (4.1) 

 
( ) ( , )

( , ) .
1 ( , )

ij ij
ij

i

p s Q s t
s t

H s t
ϕ

−
=

−
 (4.2) 

 
4.2. A Homogeneous Case Example 
 
Now we give an example using the transition matrix given in Jarrow et al (1997). 
This example will be chosen in the homogeneous case. 
This matrix was constructed starting from the one year transition matrix given in 
Standard & Poor’s Credit Review (1993).  
We report the matrix for the sake of completeness.  
 

 AAA AA A BBB BB B CCC D 
AAA 0.891 0.0963 0.0078 0.0019 0.003 0 0 0 
AA 0.0086 0.901 0.0747 0.0099 0.0029 0.0029 0 0 
A 0.0009 0.0291 0.8896 0.0649 0.0101 0.0045 0 0.0009 

BBB 0.0006 0.0043 0.0656 0.8428 0.0644 0.016 0.0018 0.0045 
BB 0.0004 0.0022 0.0079 0.0719 0.7765 0.1043 0.0127 0.0241 
B 0 0.0019 0.0031 0.0066 0.0517 0.8247 0.0435 0.0685 

CCC 0 0 0.0116 0.0116 0.0203 0.0754 0.6492 0.2319 
D 0 0 0 0 0 0 0 1 

Table 4.1: 1 year transition matrix 
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The matrix value for d.f. are not known and so we construct these d.f. by means 
of random number generators. 
We report the results at time 5 and at time 10 of the matrix ( )ij tφ  respectively in 
Table 4.2.1 and Table 4.2.2.  
For example the element 0.04326 that is in row AA and in column A represents 
the probability that a firm that at time 0 has a rating AA will have rating A at 
time 5. 
 

 AAA AA A BBB BB B CCC D 
AAA 0.93129 0.06044 0.00504 0.00148 0.00164 0.00009 0.00000 0.00001 
AA 0.00464 0.94420 0.04326 0.00519 0.00100 0.00165 0.00002 0.00005 
A 0.00051 0.01505 0.94403 0.02950 0.00697 0.00330 0.00004 0.00060 

BBB 0.00030 0.00295 0.03704 0.90384 0.04110 0.00976 0.00105 0.00397 
BB 0.00023 0.00148 0.00572 0.04727 0.85624 0.05887 0.00908 0.02111 
B 0.00000 0.00096 0.00195 0.00351 0.03377 0.89002 0.02404 0.04575 

CCC 0.00000 0.00004 0.00474 0.00535 0.01258 0.03479 0.85292 0.08958 
D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 

Table 4.2.1: probabilities (5)ijφ  
 

 AAA AA A BBB BB B CCC D 
AAA 0.83968 0.13696 0.01488 0.00375 0.00415 0.00047 0.00003 0.00008 
AA 0.01084 0.86440 0.10055 0.01526 0.00433 0.00421 0.00012 0.00030 
A 0.00141 0.03991 0.84668 0.08517 0.01638 0.00807 0.00032 0.00206 

BBB 0.00086 0.00749 0.08702 0.78071 0.08579 0.02549 0.00327 0.00937 
BB 0.00056 0.00344 0.01366 0.09229 0.69959 0.13097 0.01814 0.04135 
B 0.00003 0.00279 0.00512 0.01162 0.06732 0.75319 0.05575 0.10419 

CCC 0.00001 0.00029 0.01329 0.01436 0.02313 0.07803 0.61935 0.25154 
D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 

Table 4.2.2: probabilities (10)ijφ  
 
Table 4.3 gives the reliability results ( )iR t , probabilities to have no default in a 
time t (row index) starting in the state i (column) at time 0.  
 

 AAA AA A BBB BB B CCC D 
1 1.00000 1.00000 0.99987 0.99933 0.99846 0.99642 0.99294 0.0 
2 1.00000 1.00000 0.99975 0.99884 0.99461 0.98808 0.98146 0.0 
3 1.00000 0.99999 0.99969 0.99789 0.98908 0.97527 0.96374 0.0 
4 0.99999 0.99997 0.99961 0.99715 0.98624 0.97029 0.94233 0.0 
5 0.99999 0.99995 0.99940 0.99603 0.97889 0.95425 0.91042 0.0 
6 0.99998 0.99992 0.99917 0.99505 0.97436 0.94749 0.89800 0.0 
7 0.99997 0.99989 0.99888 0.99418 0.97144 0.93795 0.84898 0.0 
8 0.99995 0.99984 0.99856 0.99334 0.96771 0.92535 0.79778 0.0 
9 0.99994 0.99978 0.99825 0.99210 0.96446 0.90689 0.77184 0.0 
10 0.99992 0.99970 0.99794 0.99063 0.95865 0.89581 0.74846 0.0 

Table 4.3: probabilities of not having a default 
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Table 4.4 gives probabilities 1 ( )iH t−  to remain always in the starting state 
without transitions. 
 

 AAA AA A BBB BB B CCC D 
1 0.98490 0.89746 0.86572 0.92634 0.86317 0.86674 0.94774 1.0 
2 0.82635 0.82919 0.74506 0.77373 0.78411 0.75612 0.92103 1.0 
3 0.74275 0.75242 0.68724 0.65713 0.64732 0.66181 0.87814 1.0 
4 0.57977 0.73210 0.55915 0.59711 0.60133 0.58323 0.79454 1.0 
5 0.47763 0.51794 0.47518 0.45947 0.47929 0.43098 0.65872 1.0 
6 0.37730 0.41739 0.35444 0.36779 0.42974 0.30765 0.56190 1.0 
7 0.30913 0.32773 0.26773 0.29968 0.30514 0.24540 0.41717 1.0 
8 0.23808 0.25246 0.22929 0.17914 0.27208 0.15297 0.25461 1.0 
9 0.11174 0.21338 0.12389 0.14214 0.13721 0.11744 0.15293 1.0 
10 0.08543 0.02793 0.06785 0.05651 0.04622 0.07177 0.05478 1.0 

Table 4.4: probabilities to remain in the starting state 
 
Lastly, Tables 4.5.1 and 4.5.2 give probabilities ( )ij tϕ  at 5 years and 10 years. 
For example 0.07128 represents the probability that a firm that was at time 0 in 
state AA and remained in this state up to time 5 will then have the next transition 
in state A.  
 

 AAA AA A BBB BB B CCC D 
AAA 0.89611 0.09045 0.00858 0.00157 0.00329 0.00000 0.00000 0.00000 
AA 0.00861 0.90209 0.07128 0.01090 0.00417 0.00296 0.00000 0.00000 
A 0.00102 0.03494 0.86517 0.08440 0.00935 0.00405 0.00000 0.00107 

BBB 0.00078 0.00436 0.06867 0.83756 0.06478 0.01815 0.00234 0.00336 
BB 0.00041 0.00223 0.00690 0.06408 0.78794 0.11412 0.01027 0.01405 
B 0.00000 0.00264 0.00357 0.00866 0.05087 0.81139 0.05240 0.07046 

CCC 0.00000 0.00000 0.01073 0.01009 0.01212 0.06289 0.68286 0.22131 
D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 

Table 4.5.1: probabilities (5)ijϕ  
 

 AAA AA A BBB BB B CCC D 
AAA 0.98240 0.00781 0.00808 0.00063 0.00108 0.00000 0.00000 0.00000 
AA 0.03042 0.83757 0.08618 0.02700 0.01034 0.00849 0.00000 0.00000 
A 0.00107 0.04218 0.85463 0.09107 0.00919 0.00071 0.00000 0.00115 

BBB 0.00072 0.00028 0.04913 0.87719 0.04199 0.02433 0.00251 0.00386 
BB 0.00033 0.00285 0.00795 0.11255 0.64711 0.17648 0.01645 0.03627 
B 0.00000 0.00211 0.00409 0.00684 0.06930 0.79561 0.03869 0.08336 

CCC 0.00000 0.00000 0.00456 0.00604 0.03402 0.10958 0.50718 0.33864 
D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 

Table 4.5.2: probabilities (10)ijϕ  
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4.3 A Non-Homogeneous Case Example 
 
Now we give a non-homogeneous example using as basis the transition matrices 
given in Table 15 of Standard & Poor’s (2001). 
In these matrices the state No Rating was present. Starting from the data reported 
in the S&P publication, the non-homogeneous transition matrix was constructed. 
Each element ( )ijp s  of the embedded non-homogeneous Markov chain should be 
constructed directly from the data. 
 Constructing the MC, all possible transitions from state i to state j starting from 
the year s should be taken into account. But we do not have the raw data and so 
we use the one year transition matrices given in the Standard & Poor’s 
publication. 
The publication reports 20 years of history (one year transition matrices from 
1981 up 2000). The example covers from time 0, corresponding to the year 1981, 
to time 19, corresponding to the year 2000.  
Table 4.6 reports three years of the non homogeneous embedded MC. 
 

TRANSITION MATRICES 
 MATRIX AT TIME 0 
 AAA AA A BBB BB B CCC D 

AAA 0.92450 0.07550 0 0 0 0 0 0 
AA 0.01990 0.91045 0.06965 0 0 0 0 0 
A 0 0.04760 0.88406 0.06624 0.00210 0 0 0 

BBB 0 0 0.04870 0.90260 0.04870 0 0 0 
BB 0 0 0.00924 0.04631 0.62960 0.31023 0.00462 0 
B 0 0 0.01240 0 0.04940 0.91351 0.02470 0 

CCC 0 0 0 0 0 0.09090 0.90910 0 
D 0 0 0 0 0 0 0 1.00000 
 MATRIX AT TIME10 
 AAA AA A BBB BB B CCC D 

AAA 0.97070 0.02930 0 0 0 0 0 0 
AA 0.00485 0.88460 0.11055 0 0 0 0 0 
A 0 0.02129 0.88672 0.07783 0.01240 0.00176 0 0 

BBB 0 0 0.04247 0.89077 0.05151 0.00915 0 0.00610 
BB 0 0 0.00397 0.06742 0.74600 0.10714 0.03575 0.03972 
B 0 0.00975 0.00321 0.00654 0.03912 0.78181 0.05862 0.10095 

CCC 0.02269 0 0 0 0.02269 0.04549 0.56819 0.34093 
D 0 0 0 0 0 0 0 1.00000 
 MATRIX AT TIME19 
 AAA AA A BBB BB B CCC D 

AAA 0.96115 0.02776 0.01108 0 0 0 0 0 
AA 0.00986 0.87568 0.11113 0.00332 0 0 0 0 
A 0 0.02493 0.90134 0.06779 0.00428 0.00083 0 0.00083 

BBB 0 0.00178 0.02259 0.92584 0.03703 0.00638 0.00272 0.00366 
BB 0 0 0.00362 0.04074 0.87290 0.05871 0.01202 0.01202 
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B 0 0 0.00338 0.00338 0.03738 0.83230 0.04533 0.07824 
CCC 0 0 0 0 0.01296 0.06489 0.59745 0.32470 

D 0 0 0 0 0 0 0 1.00000 
Table 4.6: Embedded NHMC 

 
To apply the model it is necessary to construct also the d.f. of the waiting times 
in each state i, given that the state successively occupied is known. As we do not 
have these data either, we construct them by means of random number 
generators. 
Probabilities ( , )iH s t  to remain in the state from s to t without any transition are 
reported in Table 4.7. For example the element 0.55706 represents the 
probability that the rating AA has no other rating evaluation from the time 0 up 
to the time 9. 

Probability no movement 
TIMES AAA AA A BBB BB B CCC 
0 1 0.90856 0.96379 0.98697 0.93658 0.93951 0.92026 0.94220 
0 2 0.84173 0.92113 0.94230 0.88791 0.90524 0.86158 0.90722 
0 3 0.78727 0.88494 0.88535 0.84758 0.85096 0.77361 0.89632 
0 8 0.58795 0.59798 0.69578 0.65079 0.66009 0.62475 0.69739 
0 9 0.51816 0.55706 0.68355 0.57614 0.58619 0.60454 0.64461 
0 10 0.51338 0.50773 0.59941 0.52915 0.50759 0.59869 0.54138 
0 17 0.13144 0.10865 0.14796 0.16612 0.16478 0.15852 0.13142 
0 18 0.09384 0.09523 0.09996 0.09903 0.09947 0.10168 0.10572 
0 19 0.02224 0.03585 0.03916 0.04847 0.07476 0.07823 0.06299 
1 2 0.91830 0.94635 0.93876 0.96978 0.99286 0.90339 0.94856 
1 11 0.42990 0.46490 0.48222 0.55546 0.44814 0.49398 0.45959 
1 19 0.00536 0.07610 0.06425 0.02936 0.08739 0.06138 0.05097 
2 3 0.94570 0.96836 0.90135 0.93726 0.98392 0.98624 0.97455 
2 11 0.53603 0.44457 0.41834 0.42495 0.55929 0.52844 0.47755 
2 19 0.09757 0.05980 0.07554 0.07681 0.06381 0.07286 0.05074 
5 6 0.96537 0.92527 0.93849 0.97609 0.85933 0.97116 0.94845 
5 13 0.55308 0.42610 0.43405 0.45723 0.38602 0.47904 0.47031 
5 19 0.06883 0.02407 0.01707 0.01610 0.03967 0.03351 0.02644 
7 8 0.94296 0.90031 0.90565 0.86546 0.86446 0.90422 0.88623 
7 14 0.35994 0.44772 0.40121 0.33883 0.37718 0.42686 0.53458 
7 19 0.05654 0.04441 0.02632 0.05958 0.01941 0.07475 0.07226 
10 11 0.88047 0.94281 0.82722 0.88183 0.79898 0.88194 0.86912 
10 15 0.40490 0.53878 0.39667 0.45283 0.32490 0.50327 0.41918 
10 19 0.06716 0.00235 0.09389 0.06345 0.02003 0.08191 0.03364 
13 14 0.96214 0.73636 0.90271 0.69666 0.65322 0.86464 0.88569 
13 17 0.52826 0.27128 0.46206 0.30303 0.17601 0.45055 0.48379 
13 19 0.00934 0.08777 0.03932 0.06692 0.08494 0.02828 0.02014 
17 18 0.59856 0.51260 0.73049 0.30187 0.27078 0.73709 0.32717 
17 19 0.04785 0.06337 0.00726 0.06841 0.07776 0.01435 0.05934 

Table 4.7: probabilities to remain in the starting state without transitions 
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Tables 4.8.1 and 4.8.2 give the probabilities ( , )ij s tϕ that the next transition from 
the state i will be to the state j given that there is no transition from the time s to 
the time t.  
 

( , )ij s tϕ  Prob. Next State Without Transitions from s to t 

 TIME 0-1 
 AAA AA A BBB BB B CCC D 

AAA 0.92523 0.07477 0 0 0 0 0 0 
AA 0.02061 0.90773 0.07166 0 0 0 0 0 
A 0 0.04379 0.88959 0.06456 0.00206 0 0 0 

BBB 0 0 0.05006 0.90070 0.04924 0 0 0 
BB 0 0 0.00926 0.04740 0.63802 0.30051 0.00481 0 
B 0 0 0.01327 0 0.05037 0.91098 0.02537 0 

CCC 0 0 0 0 0 0.09064 0.90936 0 
D 0 0 0 0 0 0 0 1.00000 
 TIME 0-10 
 AAA AA A BBB BB B CCC D 

AAA 0.92792 0.07208 0 0 0 0 0 0 
AA 0.01978 0.90729 0.07293 0 0 0 0 0 
A 0 0.04515 0.89622 0.05644 0.00219 0 0 0 

BBB 0 0 0.04520 0.91235 0.04245 0 0 0 
BB 0 0 0.00933 0.04906 0.63862 0.29823 0.00476 0 
B 0 0 0.01053 0 0.04094 0.92444 0.02410 0 

CCC 0 0 0 0 0 0.07973 0.92027 0 
D 0 0 0 0 0 0 0 1.00000 
 TIME 0-19 
 AAA AA A BBB BB B CCC D 

AAA 0.73240 0.26760 0 0 0 0 0 0 
AA 0.03252 0.83111 0.13637 0 0 0 0 0 
A 0 0.11417 0.85701 0.02554 0.00328 0 0 0 

BBB 0 0 0.08342 0.83961 0.07698 0 0 0 
BB 0 0 0.00180 0.03527 0.77843 0.18296 0.00154 0 
B 0 0 0.01377 0 0.06237 0.91291 0.01095 0 

CCC 0 0 0 0 0 0.03438 0.96562 0 
D 0 0 0 0 0 0 0 1.00000 

Table 4.8.1: probabilities (0, )ij tϕ  
For example the element 0.07293 gives the probability that the next transition 
from the rating AA will be to the rating A, given that from the time 0 up to the 
time 10 there will be no real or virtual transitions; by virtual transition we denote 
the fact that the next transition is in the same state. 

 
( , )ij s tϕ  Prob. Next State Without Transitions from s to t 

 TIME 15-16 
 AAA AA A BBB BB B CCC D 

AAA 0.94075 0.05343 0.00582 0 0 0 0 0 
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AA 0.00410 0.93332 0.06258 0 0 0 0 0 
A 0 0.02803 0.95461 0.01667 0.00070 0 0 0 

BBB 0.00156 0 0.07437 0.90203 0.02028 0.00175 0 0 
BB 0 0 0.00782 0.06731 0.86642 0.04816 0.00506 0.00522 
B 0 0 0.00266 0.00548 0.09608 0.84881 0.01684 0.03012 

CCC 0 0 0 0 0.05549 0.11808 0.77923 0.04720 
D 0 0 0 0 0 0 0 1.00000 
 TIME 15-17 
 AAA AA A BBB BB B CCC D 

AAA 0.95837 0.03828 0.00335 0 0 0 0 0 
AA 0.00763 0.87026 0.12211 0 0 0 0 0 
A 0 0.02601 0.95488 0.01829 0.00082 0 0 0 

BBB 0.00217 0 0.07649 0.89866 0.02092 0.00176 0 0 
BB 0 0 0.00836 0.10192 0.84363 0.03558 0.00396 0.00655 
B 0 0 0.00237 0.00557 0.08279 0.87605 0.01026 0.02296 

CCC 0 0 0 0 0.06733 0.14355 0.74361 0.04552 
D 0 0 0 0 0 0 0 1.00000 
 TIME 15-18 
 AAA AA A BBB BB B CCC D 

AAA 0.94688 0.05050 0.00262 0 0 0 0 0 
AA 0.00377 0.92617 0.07006 0 0 0 0 0 
A 0 0.02797 0.93524 0.03576 0.00104 0 0 0 

BBB 0.00215 0 0.04336 0.93813 0.01437 0.00199 0 0 
BB 0 0 0.00497 0.08134 0.83046 0.06627 0.00643 0.01053 
B 0 0 0.00188 0.00649 0.08795 0.84445 0.01090 0.04833 

CCC 0 0 0 0 0.07399 0.07638 0.83271 0.01691 
D 0 0 0 0 0 0 0 1.00000 
 TIME 15-19 
 AAA AA A BBB BB B CCC D 

AAA 0.71135 0.20969 0.07895 0 0 0 0 0 
AA 0.00329 0.95760 0.03911 0 0 0 0 0 
A 0 0.02745 0.96394 0.00822 0.00038 0 0 0 

BBB 0.00687 0 0.27043 0.58332 0.13605 0.00334 0 0 
BB 0 0 0.01711 0.08730 0.83929 0.04680 0.00753 0.00197 
B 0 0 0.00330 0.00732 0.05632 0.90751 0.02157 0.00397 

CCC 0 0 0 0 0.16897 0.21855 0.51403 0.09845 
D 0 0 0 0 0 0 0 1.00000 

Table 4.8.2: probabilities (15, )ij tϕ  
 

Tables 4.9.1 and 4.9.2 report the probabilities ( , )ij s tφ . 
 

( , )ij s tφ  EVOLUTION EQUATION MATRICES 

 TIME 0-1 
 AAA AA A BBB BB B CCC D 

AAA 0.99243 0.00757 0 0 0 0 0 0 
AA 0.00004 0.99938 0.00059 0 0 0 0 0 
A 0 0.00438 0.99303 0.00252 0.00007 0 0 0 

BBB 0 0 0.00182 0.99560 0.00258 0 0 0 
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BB 0 0 0.00054 0.00178 0.96968 0.02790 0.00010 0 
B 0 0 0.00019 0 0.00304 0.99543 0.00135 0 

CCC 0 0 0 0 0 0.00549 0.99451 0 
D 0 0 0 0 0 0 0 1.00000 
 TIME 0-10 
 AAA AA A BBB BB B CCC D 

AAA 0.94504 0.05212 0.00233 0.00030 0.00016 0.00003 0.00001 0.00000 
AA 0.01088 0.94684 0.03928 0.00209 0.00039 0.00045 0.00006 0.00002 
A 0.00024 0.02331 0.93634 0.03691 0.00235 0.00073 0.00004 0.00008 

BBB 0.00015 0.00072 0.03173 0.92934 0.03395 0.00299 0.00038 0.00074 
BB 0.00001 0.00032 0.00569 0.02750 0.79898 0.15778 0.00483 0.00489 
B 0.00001 0.00023 0.00649 0.00189 0.02921 0.93979 0.01409 0.00828 

CCC 0.00013 0.00002 0.00022 0.00042 0.00178 0.05494 0.91981 0.02268 
D 0 0 0 0 0 0 0 1.00000 
 TIME 0-19 
 AAA AA A BBB BB B CCC D 

AAA 0.82509 0.14645 0.02217 0.00522 0.00062 0.00026 0.00004 0.00016 
AA 0.02650 0.77411 0.17356 0.02017 0.00229 0.00206 0.00034 0.00097 
A 0.00154 0.06670 0.78728 0.12462 0.01322 0.00449 0.00053 0.00162 

BBB 0.00073 0.00777 0.11696 0.74792 0.09341 0.02094 0.00338 0.00890 
BB 0.00052 0.00265 0.02266 0.11474 0.49705 0.27871 0.02436 0.05931 
B 0.00023 0.00178 0.01625 0.02366 0.11988 0.68643 0.04612 0.10564 

CCC 0.00122 0.00052 0.00712 0.01329 0.03557 0.19796 0.41307 0.33124 
D 0 0 0 0 0 0 0 1.00000 

Table 4.9.1: probabilities (0, )ij tφ  
 

For example 0.03691 represents the probability to be in the state BBB at time 10, 
given that the rating evaluation was A at time 0. 
 

( , )ij s tφ  EVOLUTION EQUATION MATRICES 

 TIME 15-16 
 AAA AA A BBB BB B CCC D 

AAA 0.99706 0.00257 0.00037 0 0 0 0 0 
AA 0.00104 0.98569 0.01327 0 0 0 0 0 
A 0 0.00431 0.98938 0.00600 0.00031 0 0 0 

BBB 0.00037 0 0.00174 0.99296 0.00470 0.00024 0 0 
BB 0 0 0.00173 0.00919 0.98279 0.00223 0.00210 0.00195 
B 0 0 0.00073 0.00133 0.01972 0.96755 0.00357 0.00710 

CCC 0 0 0 0 0.05100 0.05393 0.88217 0.01290 
D 0 0 0 0 0 0 0 1.00000 
 TIME 15-17 
 AAA AA A BBB BB B CCC D 

AAA 0.97884 0.01856 0.00258 0.00002 0.00000 0.00000 0 0 
AA 0.00258 0.97692 0.01865 0.00154 0.00002 0.00030 0 0 
A 0.00002 0.01303 0.97634 0.00993 0.00054 0.00013 0.00000 0.00000 

BBB 0.00049 0.00045 0.02373 0.96076 0.01296 0.00137 0.00015 0.00010 
BB 0 0.00002 0.00441 0.01362 0.94654 0.02774 0.00444 0.00322 
B 0 0.00001 0.00209 0.00340 0.04955 0.91258 0.01195 0.02043 
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CCC 0 0 0.00021 0.00143 0.05455 0.07365 0.83737 0.03279 
D 0 0 0 0 0 0 0 1.00000 
 TIME 15-18 
 AAA AA A BBB BB B CCC D 

AAA 0.96944 0.02615 0.00396 0.00044 0.00000 0.00001 0.00000 0.00000 
AA 0.00511 0.93798 0.05106 0.00474 0.00009 0.00100 0.00001 0.00001 
A 0.00016 0.02467 0.95236 0.02107 0.00138 0.00032 0.00002 0.00002 

BBB 0.00073 0.00075 0.04707 0.91985 0.02659 0.00360 0.00062 0.00079 
BB 0.00067 0.00011 0.00851 0.06487 0.86584 0.04090 0.01243 0.00667 
B 0.00008 0.00009 0.00382 0.00713 0.08085 0.85875 0.01694 0.03235 

CCC 0.00006 0.00002 0.00429 0.00370 0.05295 0.15521 0.66296 0.12081 
D 0 0 0 0 0 0 0 1.00000 
 TIME 15-19 
 AAA AA A BBB BB B CCC D 

AAA 0.92405 0.06701 0.00630 0.00258 0.00002 0.00001 0.00000 0.00003 
AA 0.00693 0.87733 0.10567 0.00801 0.00032 0.00104 0.00004 0.00065 
A 0.00028 0.04107 0.89584 0.05889 0.00259 0.00082 0.00004 0.00048 

BBB 0.00143 0.00348 0.07969 0.85841 0.04557 0.00778 0.00092 0.00273 
BB 0.00103 0.00104 0.01174 0.09936 0.75585 0.09407 0.01424 0.02267 
B 0.00012 0.00045 0.00568 0.01449 0.11033 0.75180 0.03423 0.08291 

CCC 0.00009 0.00020 0.00789 0.01098 0.07388 0.19592 0.52433 0.18672 
D 0 0 0 0 0 0 0 1.00000 

Table 4.9.2: probabilities (15, )ij tφ  
 
The last Table 4.10 reports the reliability probabilities giving the probabilities 
that a firm being in a given rating at time s will not have a default up to the time 
t. 
 

RELIABILITY 
TIMES AAA AA A BBB BB B CCC 
0 1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
0 2 1.00000 1.00000 1.00000 0.99998 0.99996 0.99988 0.99941 
0 3 1.00000 1.00000 1.00000 0.99995 0.99978 0.99973 0.99882 
0 8 1.00000 0.99999 0.99996 0.99956 0.99773 0.99588 0.99008 
0 9 1.00000 0.99999 0.99994 0.99945 0.99706 0.99456 0.98414 
0 10 1.00000 0.99998 0.99992 0.99926 0.99511 0.99172 0.97732 
0 17 0.99998 0.99986 0.99949 0.99621 0.97209 0.95248 0.83528 
0 18 0.99997 0.99977 0.99924 0.99480 0.96292 0.93323 0.76184 
0 19 0.99984 0.99903 0.99838 0.99110 0.94069 0.89436 0.66876 
1 2 1.00000 1.00000 0.99991 0.99971 1.00000 0.99864 0.98889 
1 11 1.00000 0.99994 0.99723 0.99736 0.96805 0.97156 0.82190 
1 19 0.99984 0.99864 0.99397 0.98721 0.91388 0.85046 0.53408 
2 3 1.00000 1.00000 1.00000 0.99978 0.99877 0.99834 1.00000 
2 11 0.99999 0.99997 0.99990 0.99740 0.98844 0.96680 0.96643 
2 19 0.99976 0.99887 0.99827 0.98681 0.94980 0.84825 0.69136 
5 6 1.00000 1.00000 0.99992 0.99998 0.99940 0.99386 0.99340 
5 13 1.00000 0.99987 0.99850 0.99663 0.98779 0.93928 0.83637 
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5 19 0.99990 0.99847 0.99482 0.98470 0.94955 0.78590 0.54287 
7 8 1.00000 1.00000 1.00000 1.00000 0.99895 0.99744 0.99036 
7 14 0.99997 0.99993 0.99982 0.99790 0.98951 0.95937 0.81924 
7 19 0.99977 0.99884 0.99805 0.98807 0.95686 0.86042 0.55024 
10 11 1.00000 1.00000 1.00000 0.99987 0.99629 0.98907 0.95349 
10 15 1.00000 1.00000 0.99996 0.99658 0.98056 0.92538 0.76563 
10 19 0.99989 0.99927 0.99906 0.98865 0.94983 0.79378 0.51705 
13 14 1.00000 1.00000 0.99999 1.00000 0.99990 0.99821 0.98290 
13 17 1.00000 0.99997 0.99926 0.99921 0.99593 0.97229 0.85015 
13 19 0.99994 0.99886 0.99804 0.99625 0.97754 0.91261 0.60743 
17 18 1.00000 1.00000 1.00000 0.99803 0.99899 0.96246 0.74975 
17 19 0.99997 0.99926 0.99974 0.99495 0.97565 0.93488 0.55347 

Table 4.10: reliability probabilities 
 



Chapter 9 
 
GENERALISED NON-HOMOGENEOUS  
MODELS FOR PENSION FUNDS 
AND MANPOWER MANAGEMENT 
 
In this chapter, we present more applications of NHSMP to insurance, 
particularly in the field of pension funds, showing that non-homogeneous models 
can be useful in real-life applications, with realistic results based on scenarios 
that can be treated numerically, even if this involves new software. 
 
1 APPLICATION TO PENSION FUNDS EVOLUTION  
 
This model is a general, rigorous and tractable stochastic evolution time model 
for pension funds, called the discrete time non-homogeneous semi-Markov 
pension fund model, taking into account economic, financial and demographic 
evolution factors so that it becomes a real-life model. 
The most important factors are: seniority, general age dependence, rate of 
inflation and salary lines. 
To take into account all these aspects, the DTNHSMP defined in Chapter 4 will 
be generalized. We call this model Generalized Discrete Time Non-
Homogeneous Semi-Markov Process (GDTNHSMP). 
The model starts from a set of m states and each member of the fund is 
necessarily in one and only one of these states at each time epoch, for example 
each year.  
The main probabilistic assumption is that the successive state transitions together 
with transition time epochs constitute a two-dimensional non-homogeneous 
Markov additive process on which the state at any time epoch t is defined by the 
imbedded NHSMP. 
Let us say that we introduce as another fundamental tool the concept of a 
scenario for strategic choices of the considered company, or even a government, 
and that of an economic scenario for the impact of the future economic 
environment. 
Finally, we also consider the statistical estimation problem of the two-
dimensional semi-Markov kernel using internal and external data. 
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 1.1 Introduction
 
Dynamic management of a pension fund is generally dealt with models, 
generally quite simple from the mathematical point of view (see Khorasanee 
(1994)) for the U.K. experience. 
However, more elaborate theoretical stochastic models are now possible (see 
Dufresne (1986), (1988), Haberman (1994), Balcer and Sahin (1983)), mostly by 
time continuous models and with restrictive conditions to get real-life models. 
Real-life models for the dynamics of pension funds are complicated (see Manly 
(1902), Myers (1988), Tomassetti (1973)) mainly because these models must 
work with a far off horizon and with many possible parameterizations. Moreover, 
there is a lack of sophisticated but tractable classes of stochastic processes to be 
used for building such models.  
The model presented here was given in Janssen and Manca (1997a) and 
generalizes the DTNHSMP that was shown in Chapter 4. The DTNHSMP is 
based on the theoretical results of Janssen and De Dominicis (1984). Another 
paper on this topic that presented an algorithmic approach to the GDTMHSMP in 
the pension fund environment was by Janssen and Manca (1998).  
The selection of discrete time models is quite natural, as we know that the 
management of a pension fund is mainly on a yearly basis. Moreover the model 
must be non-homogeneous in age, as all the parameters concerning the members 
of the fund are age dependent. Finally it is a semi-Markov model because we 
must consider transition states in connection with transition times. 
The main parameterizations are: 
 
(i) the introduction of time, 
(ii) the introduction of inflation,  
(iii) the time hedging dependence of payments from the fund and the premium 
dues paid to the fund, 
(iv) the concept of a scenario giving in particular the possibility to model the 
flows of new entrances to the fund. 
 
Let us mention that the non-homogeneous semi-Markov models, or more often 
only Markov models in pension schemes or in related environments, have been 
presented in many papers. We mention for example in manpower planning, 
Tsantas (1993) and Tsantas and Vassiliou (1993). Sahin (1993) also uses a 
particular non-homogeneous model as an extension of preceding homogeneous 
models from Sahin and Balcer (1979) and (1983). Let us recall that all these 
models are time continuous, giving thus an easier mathematical treatment than in 
models some reasonably predictable of discrete time.  
In practice, the most important problem is to study the dynamic financial 
equilibrium of the fund. To do so, we have to compute the asset and liability 
flows for the whole future to get: 
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(i) the flow of reserves,  
(ii) the equilibrium premiums. 
 
Unfortunately, these premiums are always too high. This is due to the fact that 
the rules of modern day pension schemes are too "generous" and that there now 
exist in most developed countries a demographic evolution and an economic 
environment containing few active workers and more pensioners for a longer 
time. To find and maintain an acceptable equilibrium, there must exist, in our 
view, a new type of solidarity between successive generations involving not only 
public authorities but the active cooperation of the insurance companies 
themselves. 
Then the fundamental question is: what the cost of this solidarity? We believe 
that the most promising strategy is to use simulation models involving changes of 
economic, financial and demographic parameters. This can be done by selection 
of a model that we have defined as a scenario. Although such models of course 
already exist (Tomassetti (1973), (1991), Volpe di Prignano and Manca (1988), 
Bacinello (1988),...), the GDTNHSM model presented here seems to give, as far 
as we know, the most general structure and flexibility in choosing basic 
parameter values for: 
 
-rules of the pension fund, 
-flows of premiums and pension amounts, 
-seniority influence, 
-rate of inflation forecasts, 
-changes in the salary lines. 
 
With this choice of scenario, the GDTNHSM pension fund model can provide a 
general framework for pricing solidarity proposals and for splitting their costs 
between public and private social insurance sources. 
 
1.2 The Non-Homogeneous Semi-Markov Pension Fund 
Model
 
It is well known that the pension fund problem is one of the most important 
problems of the present time, not only for people today but for future 
generations. 
Clearly, this problem must be placed in a general economic, financial, 
demographic and political framework. For example, one of the basic facts is a 
change in mortality rates: in almost all countries, these rates are decreasing so 
that more and more people will be entitled to a pension.  
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It is now a fact that the numbers of the working population will also decrease. 
Nowadays, most national governments are preoccupied with the catastrophic 
evolution of national pension funds and some now see a need for collaboration 
with insurance companies. In any event, whatever the future choice of such 
collaboration may be, we will always need actuarial models that will describe the 
stochastic evolution of pension funds.  
To be realistic enough, these models must depend on many of parameters and 
particularly may be non-homogeneous in time for obvious reasons like the ones 
mentioned above. Moreover, as it is generally impossible to predict the evolution 
of basic parameters on salary evolution, on inflation, on disability and so on, 
these models must be able to study the influence of possible scenarios in order to 
hedge against undesirable changes. 
For example, within a selected scenario, we can use asset liability management 
techniques to preserve the financial equilibrium of the fund. We can also study 
the possible impact of a new demographic development or that of changes in 
mortality rates or also the impact of a manpower expansion of the society 
concerned, etc. 
The model presented here offers all these possibilities. To give a clear 
understanding of our model, we will proceed in two parts: first, we will show 
how we manage time non-homogeneity with DTNHM in this environment and 
second, we will present way to introduce the possible influences of time 
evolution of demography and salaries, taking into account the basic rules of the 
considered fund. 
For simplicity, we present the model for one selected company or society but 
note it is also possible to consider the same type of model on a macroeconomic 
level provided we have enough data. 
The pension fund model should generalize the DTNHSMP presented in Chapter 
4. In this way it is possible to take into account all the different aspects that are 
important to follow the time evolution of a pension scheme. The generalization 
will be made step by step, introducing each time a new temporal variable.  
For a better understanding of the generalization of the different steps, we will 
also repeat the introduction of the DTNHSMP that represents the initial one. 
 
1.2.1. The DTNHSM Model 
 
One of the simplest models for pension time evolution uses a four state space 
model with a as active state, i for the invalidity state, p for pension state and d for  
death or outgoing state. Let us denote this state space by I with 
 { }, , ,I a i p d= . (1.1) 
Clearly in the simplest case, at any time n, each member of the pension fund is in 
one and only one of these four states. 
In one time unit, some transitions are possible and some others are not and of 
course, state d is clearly an absorbing state.  
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More generally, we will now suppose that the state space has m elements:  
 I={ }1,...,m . (1.2) 
Let us now introduce a discrete time scale: we observe the state at times 
0,1,2,...,n,.... 
If the random variable nJ  represents the state of the member at transition n, it is 
usual to assume that the discrete time stochastic process ( , 0)nJ n ≥  is a 
homogeneous Markov chain with ijp⎡ ⎤= ⎣ ⎦P  as transition matrix.  

However, it is much more realistic to introduce age dependence for this matrix: if 
s represents the member age at the transition n, the transition probability matrix 
is now written as  
 ( ) ( )ijs p s⎡ ⎤= ⎣ ⎦P  (1.3) 

and consequently, the stochastic process ( , 0)nJ n ≥  becomes non-homogeneous 
in age. 
To get a more realistic model, we will now introduce another random sequence 
( , 0)nT n ≥ , nT  representing  the age of the member at transition n. 
We do not only want to study closed pension funds for which all members are 
present at time 0 and nobody else can enter later, but also open pension funds 
including the possibility of adding new members at any time t .This means that if 
we select a new member at time n, we must first observe not only his state but 
also his age. 
So, we can now introduce the two-dimensional stochastic process 
 (( , ), 0)n nJ T n ≥  (1.4) 
where clearly: 
 0 10 ,nT T T≤ ≤ ≤ ≤ ≤  (1.5) 

0T  representing the entrance time of the new member. 
The basic assumption is that the (J,T) process is a discrete time non-
homogeneous Markov renewal process so that (see Chapter 4): 

 
( )
( )

1 1

1 1

, , , 1, , ,

, , ,
n n n n

n n n n

P J j T t J T n J i T s

P J j T t J i T s
ν ν ν+ +

+ +

= ≤ ≤ − = =

= ≤ = =
 (1.6) 

with of course s < t, an assumption which seems quite natural for pension fund 
time evolution. 
As usual, the associated non-homogeneous semi-Markov matrix kernel Q is 
defined as the m m×  matrix whose general element is given by: 
 ( )1 1( , ) , ,ij n n n nQ s t P J j T t J i T s+ += = ≤ = = . (1.7) 
As the time scale is discrete, the general element of the matrix B is: 
 ( )1 1( , ) , ,ij n n n nb s t P J j T t J i T s+ += = = = = , (1.8) 
and so 
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 ( , ) ( , )
t

ij ij
h s

Q s t b s t
=

=∑ . (1.9) 

It is now possible to express the matrix ( ) ( )ijs p s⎡ ⎤= ⎣ ⎦P  as follows: 

 ( )1( ) ,ij n n np s P J j J i T s+= = = =  (1.10) 
and so with relation (1.7): 
 ( ) ( , )ij ijp s Q s= ∞ . (1.11) 
For the sequel, we also need to introduce the following conditional marginal 
probability: 
 ( )1( , ) ,i n n nH s t P T t J i T s+= ≤ = =  (1.12) 
giving the probability that the member will leave state i before or at age t. 
Of course, we also have: 

 
1

( , ) ( , ),
m

i ij
j

H s t Q s t
=

=∑  (1.13) 

 ( , ) 1.iH s ∞ =  (1.14) 
Another interesting random variable is the sojourn time in one of the m states just 
after a transition in this state: here too, if at time s, the new member is entering in 
state i, the probability that he will leave this state before t with a transition to 
state j will be represented by the function ( , )ijF s t  and we know that 

 
( , )

( , ) ,
( )

ij
ij

ij

Q s t
F s t

p s
=  (1.15) 

provided that, of course, the probability ( )ijp s  is strictly positive. 
The last probabilities will be of great interest for the statistical estimation 
problem described later. 
Of course, one of the main interests of the proposed model is related to the 
definition of the so-called associated non-homogeneous semi-Markov process 
Z= ( ( ), 0)Z t t ≥  representing, for each time t, the state occupied by the member 
for which the transition probabilities will be written as 
 ( )( , ) ( ) ( )ij s t P Z t j Z s iφ = = = , (1.16) 
which are solutions of the algebraic system: 

 
1 1

( , ) (1 ( , )) ( , ) ( , )
m t

ij i ij ik kj
k s

s t H s t b s t
ϑ

φ δ ϑ φ ϑ
= = +

= − +∑ ∑ . (1.17) 

In this case the model presented here will be called the discrete time non-
homogeneous semi-Markov pension funds model (in short DTNHSMPFM). 
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1.2.2. The States Of DTNHSMPFM 
 
For any stochastic model, it is very important to select a set of states not only in a 
parsimonious way but also to give the best possible description of the dynamic 
time evolution of the considered system. 
Every pension fund depends on a written contract called the pension scheme; the 
nature of different states is in fact reflected by this scheme. 
Since we would like our model to be applicable to a wide variety of pension 
funds, , we propose the following selection for the m states of I: 
 
-   the first m−5 states: 1,2, , 5m −…  give all possible worker states, i.e., the 
different job ranks within the considered firm, 
-   state m−4 represents the disability state, 
-   state m−3 represents the pension state, taken at the usual age written in the 
pension scheme, 
-   state m−2 represents the pre-pension state, taken at the permitted age written 
in the pension scheme but before the age of the normal pension, 
-   state m−1 represents the survivor pension state, given until the permitted age 
written in the pension scheme to survivors after the death of the member, 
-   state m represents the absorbing state of leaving the fund with no more charges 
due to membership, for example death without any survivor: 
 
The graph of possible transitions is given in Figure 1.1. 
Of course, we may simplify or complicate our model with the suppression or 
addition of other states to get a particular DTNHSMPFM. 
For example, we begin this section with the presentation of a four-states model 
which is the simplest possible model. We could of course subdivide state m−4 
in two states, illness and disability, and furthermore consider the different 
disability degrees. 
From the theoretical and numerical points of view, such an introduction of some 
supplementary states does not raise a problem. However, from the practical point 
of view, this introduction complicates the delicate statistical problem of 
estimating the necessary data to have an operational model. 
 
1.2.3 The Concept Of Seniority In The DTNHSMPFM 
 
When a member of the fund is in one of the first m−5 states and has a potential 
for a transition to one of the last five states, we must add information to be able 
to evaluate the financial charges for the fund and moreover, for a sojourn in the 
(m−5) first states, we need to evaluate the incomes to the fund. 
As both financial charges and incomes of the fund depend on the salaries of the 
members, the necessary basic information is related to the salary scale through 
the concept of seniority. 
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The seniority concept represents the time spent by a member in the company 
since his first entrance. As often it is possible to have fictive seniority at the 
entrance time of the member, for example to attract competent members in 
specialized fields, this initial seniority will be represented by the non-negative 
random variable 0S . 
We give some constraints to seniority, more precisely: 
- seniority cannot be greater then 0 at an initial work age α , for example 18, 
- in a first statement of our model, seniority continues to increase also after 
retirement. 

 
Figure 1.1: pension fund transitions  

 
The second constraint can appear wrong, but once the pension is fixed (at 
retirement age) there are no financial influences on the fund, moreover in this 
way we know the fictive number of years that a person has in the fund.  
In the following we will also present a version of the model with maximum 
seniority. This model will be more tortuous then the one that we are going to 
present. 
The seniority , 1nS n ≥  is usually defined by the relation: 
 1 1 , 0.n n n nS S T T n+ += + − >  (1.18) 



 
 
 
 
 
 
Generalized NHSMP models                                                                           381 

 

For some members, it may however be necessary to add another fictive seniority, 
due to an exceptional promotion for example. 
The introduction of the new stochastic process ( , 1)nS S n= ≥  implies that now, 
at each state transition time n, the considered member of the fund is characterized 
by the triple ( , , ), 1n n nJ T S n ≥ . 
Our new assumption will be that this (J,T,S) process is a bi-dimensional non-
homogeneous Markov renewal process (J,(T-S)) with as kernel: 
 ¨ 1 1 1( , ) ( , , , , )ij n n n n n nQ s t P J j T t S t s J i T s Sτ τ τ+ + += = ≤ ≤ + − = = = . (1.19) 
Probabilities defined in the preceding section only for the (J,T) process may be 
easily extended to the (J,T,S) process as follows: 
 ¨ 1 1 1( , ) ( , , , , )ij n n n n n nb s t P J j T t S t s J i T s Sτ τ τ+ + += = = = + − = = =  (1.20) 
so that: 

 ( , ) ( , )
t

ij ij
h s

Q s t b s hτ τ

=

=∑ . (1.21) 

Similarly, if we define: 
 ( )1( ) ,ij n n np s P J j J i T s+= = = =  (1.22) 
we have: 
 ( ) ( , )ij ijp s Q sτ τ= ∞ . (1.23) 
These other following extensions are straightforward: 

 
1

( , ) ( , )
m

i ij
j

H s t Q s tτ τ

=

=∑  (1.24) 

where: 
 ( )( ) 1 , ,i st n n n nH P T t J i T s Sτ τ+= ≤ = = = , (1.25) 

 ( , ) 1iH sτ ∞ = , (1.26) 

 
( , )

( , ) ,
( )

ij
ij

ij

Q s t
F s t

p s

τ
τ

τ=  (1.27) 

where 
 ( )1 1( , ) , , ,ij n n n n nF s t P T t J i J j T s Sτ τ+ += ≤ = = = = , (1.28) 
i.e. the sojourn time conditional  distribution entering in state i at time transition 
n with a seniority τ . 
Finally, it is also possible to define the two-dimensional semi-Markov process 
associated with the two-dimensional NHMRP (J,(T-S)) noted as 
 ( ( ), , 0)Z Z t tτ τ= ≥ , (1.29) 

( )Z tτ  representing, for each  time t, the state occupied by the member of 
seniority τ . 
The transition probabilities of this last process are given by: 
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 ( )( , ) ( ) ( )t s
ij s t P Z t j Z s iτ τ τφ + −= = =  (1.30) 

satisfying the analog system complying with (1.17): 

 
1 1

( , ) (1 ( , )) ( , ) ( , )
m t

s
ij i ij ik kj

k s
s t H s t b s tτ τ τ τ ϑ

ϑ

φ δ ϑ φ ϑ+ −

= = +

= − +∑ ∑ . (1.31) 

To conclude this section, we can say that: 
-  the introduction of the concept of seniority is mathematically tractable,  
- the introduction of seniority represents the first generalization step, 
-  the problem of getting data will be studied later. 
 
1.3 The Reserve Structure 
 
To apply this model to the pension fund problem we need to consider a reward 
structure connected with the semi-Markov process representing the financial 
charges and incomes of the considered fund. 
Let us define now: 

( , )iV s t : the discounted expected reserve at a fixed epoch of the reward in the 
time interval [ ),s t , given that there is an entrance in state i at age s, 

iψ : the amount paid per time period in state i (permanence reward), 
r: the fixed rate of interest, 

h r
a : the present value of a unitary h-period annuity i.e.: 

 
1
(1 ) .

h
k

h r
k

a r −

=

= +∑  (1.32) 

The evolution equations are the following ones: 

 1 1

1 1

( , ) (1 ( , )) ( , )

( , ) ( , )(1 ) ,

t m

i i i i it s r s r
s

t m
s

i
s

V s t H s t a b s a

b s V t r

β θ
θ β

θ
β β

θ β

ψ θ ψ

θ θ

− −
= + =

−

= + =

= − +

+ +

∑ ∑

∑ ∑
 (1.33) 

1,..., ;i m=    0 ;s t≤ ≤     , 0,1,....s t =  
In this case, the ( , )iV s t  are the discounted expected values of the reserves that 
have been paid from s to t when a member has arrived in state i at age s.  
The term (1 ( , )iH s t− ) represents the probability to remain in state i once a 
member has arrived there at age s, a member having to pay (or to get) at each 
period of time the reward iψ . This first term represents, as already explained in 
Chapter 4, the expected value of this amount. 
The second term of (1.33) gives the expected present value of the rewards that a 
member arrived in i at age s paid in this state before changing the state. 
The last term of relation (1.33) represents the expected value of the reserves that 
a member who arrived in state i at age s and changed his situation at age θ  has to 
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pay in the other state. These values are discounted at time θ , so we need to 
discount them at time s. 
As with the evolution equations (1.33) it is not possible to allow for different 
behaviors as a function of the seniority of people. We need to change the 
evolution equations of the reserve process to introduce a seniority factor, 
generalizing also the reward process, as we did for the semi-Markov process. 
In this light, the relations (1.33) become: 

 1 1

1 1

( , ) (1 ( , )) ( , )

( , ) ( , )(1 ) .

t m

i i i i it s r s r
s

t m
s s

i
s

V s t H s t a b s a

b s V t r

τ τ τ τ τ
β θ

θ β

τ τ θ θ
β β

θ β

ψ θ ψ

θ θ

− −
= + =

+ − −

= + =

= − +

+ +

∑ ∑

∑ ∑
 (1.34) 

The meaning of (1.34) is analogous to that of (1.33), the only difference being 
that now it is moreover possible to consider seniority. In this way, the 
probabilities of changing states because of seniority, and moreover, it is possible 
to consider also different rewards as a function of different seniorities namely: 
 , 0, 1, ,i i mτψ τ ≥ = … . (1.35) 
 
1.4. The Impact Of Inflation And Interest Variability 
 
To begin with, let us point out that it is important to make some assumptions on 
the moments of the reward payment and of the state changes, because we are 
working with discrete time models. 
Our main assumptions are the following: 
 
i)  amounts of money are paid entirely at the midpoint of our period (we can 
suppose that the period is one year, for example), 
ii) changes always happen at the midpoint but after the reward payment. 
 
Figure 1.2 illustrates this assumption. 
 

 
Figure 1.2: payment and state change instants  

 
In general, rewards are also time dependent but we still assume that it is not the 
case, because the evolution equations of DTNHSMP are not involved in this 
change. We only suppose that the transition probabilities change in time but only 
because of age and seniority. 
Another important point is to take into account both inflation and interest rate 
variability, the latter being represented by the variations of the yield curve so that 
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the model can measure the impact of the interest risk or of a change of an interest 
scenario.  
Let us thus introduce: 
 0, 1,...,ir i w> = , (1.36) 
representing the successive interest rates in our time horizon, [ ]0,w being the 
time interval that we consider for the simulation.  
From these values, taking into account the hypotheses that we made, we can 
construct the present value factors. 
Let us be precise that we need to consider two different kinds of factors: one, 'ν , 
for the present value of the reward and the other, ν  for discounting the ( , )iV s tτ , 

0, 1,..., .hr h w> =  
Furthermore we now can introduce for the amount i

τψ  a new dependence on the 
time h. We will note: 
 ( )i hτψ ,   , 1, , ; 0, ,h i m h wτ ≥ = =… … . (1.37) 
Figure 1.3 describes the reward payment process. 
Figures 1.4 and 1.5 describe the two different discounting processes and after 
them the related formulas are reported: 

 
Figure 1.3: reward payments 

 
Figure 1.4: discount factors of reward payments  

 
Figure 1.5: discount factors of reward process  

 
We need a different discounting process. Indeed, the ( , )iV s tτ  are discounted 
always at the initial moment and the related discount factors will be ( , )s tν . The 
sums received or paid by the fund instead will be discounted by the '( , )s tν  
considering one half period more. 
After these assumptions that also take into account the passage of time, the 
evolution equations for a discrete time non-homogeneous semi-Markov pension 
reserve process DTNHSMPRP are: 
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1
,

1

1 1

,

1 1

( , ) (1 ( , )) ( ) '( , )

( , ) ( ) '( , )

( , ) ( , ) ( , )

h t s
h k h

i i i
k h

t m h s
k h

i i
s k h

t m
s h s

i
s

V s t H s t k h k

b s k h k

b s V t h h s

τ τ τ

θ
τ τ

β
θ β

τ τ θ θ
β β

θ β

ψ ν

θ ψ ν

θ θ ν θ

+ − −
+ −

=

+ − −
+ −

= + = =

+ − + −

= + =

= −

+

+ + −

∑

∑ ∑ ∑

∑ ∑

 (1.38) 

with 

 1

1

( , ) (1 ) , ( , ) 1
h k

h

h k r h hα
α

ν ν
+

−

= +

= + =∏ , (1.39) 

 
1

1 .5'( , ) (1 ) (1 )
h k

h k
h

h k r rα
α

ν
+ −

− −
+

=

= + +∏ . (1.40) 

Let us say once more that the reserve , ( , )h
iV s tτ  represents the mean present value 

at time h of all the rewards that were paid to members of seniority τ  of age s at 
time h up to age t. 
The next figure gives support for an example to explain formula (1.38). 
 

0 1 2 3
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Figure 1.6: time axes 
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k k
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i i

V H k k

b k k b k k
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β β
β β

β β β β
β β

ψ ν

ψ ν ψ ν

ν ν

+

=

+ +

= = = =

= =

= −

+ +

+ +

∑

∑ ∑ ∑ ∑

∑ ∑ 2).

 (1.42) 

 
1.5. Solving Evolution Equations  
 
The equations (1.32) and (1.38) can be written in matrix form as follows: 

 
1

( , ) ( ( , )) ( , ) ( , )
t

s

s
s t s t s tτ τ τ τ θ

θ

θ θ+ −

= +

= − + ∑Φ I H B Φ , (1.43) 
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1
,

1

1

,

1

( , ) ( ( , )) ( ) '( , )

( , ) ( ) '( , )

( , ) ( , ) ( , ),

h t s
h k h

k h
t h s

k h

s k h
t

s h s

s

s t s t k h k

s k h k

s t h h s

τ τ τ

θ
τ τ

θ

τ τ θ θ

θ

ν

θ ν

θ θ ν θ

+ − −
+ −

=

+ − −
+ −

= + =

+ − + −

= +

= −

+

+ + −

∑

∑ ∑

∑

V I H ψ

B ψ

B V

 (1.44) 

where ( , ), ( , ), ( , )s t s t s tτ τ τΦ H B  are square m m×  matrices, , ( , )h s tν V  an m 
vector and where: 
 0 s tτ≤ ≤ ≤ ,   , , ,s t hτ ∈ , (1.45) 
 ( , ) (1 ( , ))ij is t H s tτ δ⎡ ⎤= −⎣ ⎦H , (1.46) 

 

1

2

( )

( )
( )

( )

k

k
k

k
m

k

k
k

k

τ

τ
τ

τ

ψ

ψ

ψ

+

+
+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

ψ . (1.47) 

If we want to solve the two evolution equations for a finite time horizon 
considering the same period for both random variables nS  and nT , i.e. we are 
considering w  periods, we have: 
 0 ;s t h wτ ω≤ ≤ ≤ ≤ ≤  (1.48) 
instead of (1.46) and then formulas (1.44) and (1.45) hold; ω represents the 
maximum reachable age. 
The particular structure of systems (1.46) and (1.45) implies that no matrix 
inversion is necessary to get the solutions. In fact, in the case of (1.44) we have: 
 ( , )w ω ω =Φ I , (1.49) 
 1 ( , )w ω ω− =Φ I , (1.50) 
 1 ( 1, 1)w ω ω− − − =Φ I , (1.51) 
 1 1 1( 1, ) ( 1, ) ( , ) ( ( 1, ))w w w wω ω ω ω ω ω ω ω− − −− = − + − −Φ B Φ I H . (1.52) 
The last relation gives the value of 1 ( 1, )w ω ω− −Φ  and as: 
 2 ( , )w ω ω− =Φ I , (1.53) 
 2 ( 1, 1)w ω ω− − − =Φ I , (1.54) 
 2 2 1 2( 1, ) ( 1, ) ( , ) ( ( 1, ))w w w wω ω ω ω ω ω ω ω− − − −− = − + − −Φ B Φ I H , (1.55) 
 2 ( 2, 2)w ω ω− − − =Φ I , (1.56) 
we find the following "backward" values: 

 
2 2 1

2

( 2, 1) ( 2, 1) ( 1, 1)
( ( 2, 1)),

w w w

w

ω ω ω ω ω ω

ω ω

− − −

−

− − = − − − −

+ − − −

Φ B Φ
I H

 (1.57) 
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2 2 1

2 2

( 2, ) ( 2, 1) ( 1, )
( 2, ) ( , ) ( ( 1, )).

w w w

w w w

ω ω ω ω ω ω

ω ω ω ω ω ω

− − −

− −

− = − − −

+ − + − −

Φ B Φ
B Φ I H

 (1.58) 

To go on with this special case of "backward substitution" we finally obtain: 
 0 ( , )α α =Φ I , (1.59) 
 0 0 1 0( , 1) ( , 1) ( 1, 1) ( ( , 1))α α α α α α α α+ = + + + + − +Φ B Φ I H , (1.60) 

 
0 0 1

0 2 0

( , 2) ( , 1) ( 1, 2)
( , 2) ( 2, 2) ( ( , 2)),
α α α α α α

α α α α α α

+ = + + +

+ + + + + − +

Φ B Φ
B Φ I H

 (1.61) 

 0 0 0

1

( , ) ( , ) ( , ) ( ( , ))
ω

θ α

θ α

α ω α θ θ ω α ω−

= +

= + −∑Φ B Φ I H . (1.62) 

Now we will show how this special kind of “backward substitution” proceeds. 
We have a five indices matrix, this matrix can be seen as a three-dimensional 
matrix whose elements are m-order square matrices. 
In Figure 1.7 is shown the case in which 5ω α− =  and the number near the 
matrix represents seniority. For each seniority, we have a block matrix. First of 
all we can find the value of the unique element that is in the block matrix 5. Once 
we know this element we can find the three elements of the matrix 4; working on 
these elements with a “backward substitution”, in the same way it is possible to 
compute the elements of the block matrix 3 and so on up to the matrix indexed 
by 0. 
 

0, 1, 2, 3,

4, 5

• • • • • •⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥• • • • • • • • • •⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥• • • • • • • • • • • •
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

• • • • • • • • • • • •⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥• • • • • • • •
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

• • • •⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥• •
⎢ ⎥ ⎢ ⎥

• •⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
Figure 1.7: the GDTNHSMP backward substitution 

 
Equations (1.45) have the same structure and so can be solved by a backward 
substitution, but with different indexes; for this reason we think it would be 
better to show also in this case how this process works. 
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We refer to the example shown at the end of the previous paragraph. In the 
following are described the matrix formulas of the "backward substitution" for 
this case. 
 ,0 ( , )w ω ω =V 0 , (1.63) 
 ,1 ( , )w ω ω =V 0 , (1.64) 
 1,0 ( 1, 1)w ω ω− − − =V 0 , (1.65) 

 

0
1,0 1 1

0

1 1 1 ,1

( 1, ) ( ( 1, )) (0) '(0,0)

( 1, ) (0) '(0,0) ( 1, ) ( , ) (0,1).

w w w

k

w w w w

ω ω ω ω ν

ω ω ν ω ω ω ω ν

− − −

=

− − −

− = − −

+ − + −

∑V I H ψ

B ψ B V
 (1.66) 

Using now result (1.64), we solve (1.66). 
For the following steps we have: 
 ,2 ( , )w ω ω =V 0 , (1.67) 
 1,1 ( 1, 1)w ω ω− − − =V 0 , (1.68) 

 

1
1,1 1 1

1

1 1 1 ,2

( 1, ) ( ( 1, )) ( ) '(1, )

( 1, ) (1) '(1,1) ( 1, ) ( , ) (1,2),
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k
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k kω ω ω ω ν

ω ω ν ω ω ω ω ν

− − −
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− − −
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+ − + −

∑V I H ψ

B ψ B V
 (1.69) 

 2,0 ( 2, 2)w ω ω− − − =V 0 , (1.70) 

 

0
2,0 2 1

0
2 2

2 1,1

( 2, 1) ( ( 2, 1)) ( ) '(0, )
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 (1.71) 

 

1
2,0 2 2

0
1

2 2

1 0

2 , 2

1

( 2, ) ( ( 2, )) ( ) '(0, )

( 2, ) ( ) '(0, )

( 2, ) ( , ) (0, 2).
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=
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∑

∑ ∑

∑

V I H ψ

B ψ

B V

 (1.72) 

In this way we can get the solutions of (1.72) knowing the previous results. 
At last let us describe the solution for people that were at age α  and seniority 
equal to 0 at the beginning of the simulation. We have successively: 
 , ( , )w w ω ω =V 0 , (1.73) 
 1, 1 ( 1, 1)w w ω ω− − − − =V 0 , (1.74) 
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 (1.75) 

and at last 
 0,0 ( , )α α =V 0 , (1.76) 

 

0
0,0 0

0

0 0 0 1,1

( , 1) ( ( , 1)) ( ) '(0, )

( , 1) (0) '(0,0) ( , 1) ( , 1) (0,1),

k

k
k kα α α α ν

α α ν α α α α ν
=

+ = − +

+ + + + +

∑V I H ψ

B ψ B V
 (1.77) 

 

1
0,0 0

0
2 1

0

1 0
2

0 ,

1

( , 2) ( ( , 2)) ( ) '(0, )

( , ) ( ) '(0, )

( , ) ( , 2) (0, ),

k

k

k

k

k k

k k
α θ α

θ α

α
θ α θ α

θ α

α α α α ν

α θ ν

α θ θ α ν θ α

=

+ − −

= + =

+
− −

= +

+ = − +

+

+ + −

∑

∑ ∑

∑

V I H ψ

B ψ

B V

 (1.78) 

 

1
0,0 0

0
1

0

1 0

0 ,

1

( , ) ( ( , )) ( ) '(0, )

( , ) ( ) '(0, )

( , ) ( , ) (0, ).

k

k

k

k

k k

k k

ω α

ω θ α

θ α

ω
θ α θ α

θ α

α ω α ω ν

α θ ν

α θ θ ω ν θ α

− −

=

− −

= + =

− −

= +

= −

+

+ −

∑

∑ ∑

∑

V I H ψ

B ψ

B V

 (1.79) 

 
1.6. The Dynamic Population Evolution Of The Pension 
Funds 
 
We will now immediately consider an open pension scheme in a way which is 
defined below. 
Let us begin with the following definitions: 
 

, ( )h
iN sτ : the number of members present in the fund at time h with seniority τ , 

age s and in state i, 
, ( )hN sτ : the number of members present in the fund at time h with seniority τ  

and age s, 
,h

iNτ : the number of members present in the fund at time h with seniority τ  and 
in state i, 

,hNτ : the number of members present in the fund at time h with seniority τ  , 
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h
iN : the number of members present in the fund at time h in state i, 

hN : the total number of members present in the fund at time h. 
 
By summation, we clearly get. 

 
1

, , ,

1
( )

m
h h h

i
s i

N N s N
ω

τ τ τ

α

−

= =

= =∑ ∑ , (1.80) 
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i
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N N Nτ

τ
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= =

= =∑ ∑ . (1.82) 

To go further, we have to introduce a scenario, often called the central scenario- 
also sometimes called the basic strategy- concerning the number of active people 
the firm wants to have at any time. In other words, this means that the value of 
 , 0,1, ,h

iN h T= …   1,2, , 5i m= −… , (1.83) 
where , 0,1, ,h

iN h T= …  represents the total number of people present in the fund 
at time h in state 1,2, , 5i m= −… , T being a fixed time horizon. 
From now on, we will work conditionally according to the observations resulting 
from this selected central scenario. In other words, this means that at time h, we 
know exactly the past counting evolution which may be used for computing 
probabilities of future events. 
Now, we are to study the population fund on any time interval [ ), ,h h t s+ −  
( )s t< ; so let us define: 
 

, ( , )t s hN s tτ + − : the number of members present in the fund  initially of age s and 
seniority τ  at time h still present at time ( )h t s t s+ − > and so of age t, 

, ( , )t s h
iN s tτ + − : the number of members present in the fund  initially of age s, and 

seniority τ  at time h still present at time ( )h t s t s+ − >  and so of age t but in 
state i. 
 
With such counting observations, one could estimate some basic probabilities.  
For example, let us consider the event that a member should definitively leave 
the system. More precisely, let , ( , )t s hL s tτ + −  represent the probability that a 
member in state i with seniority τ  at time h will go to the absorbing state m at 
time h+t− s. 
Using the bi-dimensional associated semi-Markov process (1.29) with transition 
probabilities (1.30), we get: 
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 (1.84) 

It is now possible to compute the distribution of the counting variables 
ν+ −t s h

stN,
( )  in the following way: 
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 (1.85) 

More generally, using the multinomial distribution, we get for the joint 
distribution of the variables , ( , )t s h

iN s tτ + − , i=1,...,m, the following result: 
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 (1.86) 

where 

 

,
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,
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m
h

ij i
t s h i

j h

s t N s
q s t j m

N s
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∑
…  (1.87) 

Let us recall that we are using a central scenario; also let us denote, at every time 
h, by hΨ all the information available including the past observations and also 
the scenario. 
So, it is possible to compute conditional means at chosen times for some 
interesting counting variables. For example let us take the following one: 
 ( ), ,( , ) ( , ) .t s h t s h

j j hN s t E N s tτ τ+ − + −= Ψ  (1.88) 

From result (1.87), we get: 
 , ,( , ) ( ) ( , ).t s h h t s

j jN s t N s q s tτ τ τ+ − + −=  (1.89) 
Another interesting conditional mean concerns the number of members being in 
state i, seniority τ  and age s at time h and still not in the absorbing state at time 
t s h− + . If we note this conditional mean by , ( , )h

iN s tτ , we immediately have: 
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( , ) ( , ) ( ).
m

h h
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N s t s t N sτ τ τφ
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=

=∑  (1.90) 

This mean represents at any time h the mean number of workers at time h+t− s 
we can predict at time h. 
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1.7 Financial Equilibrium Of The Pension Funds 
 
Before studying the equilibrium of the fund, let us remark that the formulas we 
wrote before are useful for solving the equations in the general case but, if we 
want to face the problem of pension applications, there are some differences. In 
fact, as we said before, the age horizon of the fund member must be at least 85 
years and the seniority horizon at most fifty years. If in writing formulas we were 
to be more precise we would take into account the maximum seniority. For this 
reason the formulas of evolution equations should be adapted. 
Let us define: 

sK = maximum reachable seniority. 
 In this light the equations (1.43) and (1.44) can be written in the following way: 
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 (1.91) 

Also in this case there is no matrix inversion and the system can be solved in the 
same way as presented previously. 
The presented model allows the management of a pension fund in which the 
considered rewards change because of the state, seniority and time and 
furthermore allows one to follow the dynamic financial evolution of the fund and 
therefore its financial equilibrium, the central objective of the fund managers. 
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 (1.92) 

First of all let us define: 
E: equity of the fund at time 0 
A: total salary mean present value 
O: total outlays mean present value 
M: mean equilibrium rate (i.e. the percentage of the salary that is necessary for 
the equilibrium of the fund) defined as: 

 O EM
A
−

= . (1.93) 

To find the dynamic pension fund evolution, we need to know the M value and 
so it is necessary to make a static study of the fund. 
Of course  E is known and it suffices to compute O and A.  
To obtain these values we need to solve twice the (1.92) and (1.93) evolution 
equations, the first time putting equal to 0 all the outlay rewards and equal to the 
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salary amount the positive (for the fund) rewards. We denote the reward vector 
obtained in this way 'ψ . The second time it is necessary to put equal to 0 all the 
positive rewards, giving the right values to the outlays. The related reward vector 
will be denoted "ψ . These vectors are given in the following formulas: 
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Now we can solve twice the evolution equations (1.93) and we get respectively  
, ' ( , )h

iV s tτ , the mean present value of the salaries paid by the firm to a class of 
people that at time h had a seniority τ , an age s and was in the state i in the time 
period from h up to h+t− s and , " ( , )h

iV s tτ , the mean present value of the 
pensions that the fund paid to a class of people that at time h had a seniority τ  , 
an age s and was in the state i in the period from h up to h+t− s. 
Now we can obtain the values of A and O as follows: 
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and finally the mean equilibrium rate M from relation (1.93). 
By means of relations (1.96) (1.97) and (1.93) we get the static study of the fund 
in the sense of a knowledge of total outlay mean present value (technical 
reserve), of total salary mean present values and equilibrium rate. 
Once we get the mean equilibrium rate M, we can follow the dynamic 
development of the pension fund. 
Now let: 
 ( ) ' ( ) ,j jh h Mτ τψ ψ=    1,..., 5, 0,..., , 0,...,sj m K h wτ= − = = , (1.98) 

then, we have to solve (1.91) and we can obtain the
,

( , )
t s h

jN s t
τ + −
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If kI  and kO  represent respectively the total mean input and total mean output 
for year k, we have: 
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By means of these last two results, we get respectively the annual entrances and 
outlays of the fund and we can follow its dynamic development. 
 
1.8. Scenario And Data 
 
The DTNHSM pension fund model presented here has been seen to be 
mathematically tractable, though it is a very general model, i.e., able to take into 
account a lot of possibilities such as age, seniority, salary line inflation rate,... 
and of course with the help of strong computer technology. 
However, due to the long time horizon on which we study any pension fund, we 
must clearly distinguish between scenario and other relevant data. 
 
A scenario is always represented by a set of data selected by the society or other 
authorities to study their influence in the future. There may be some changes in 
the rules of the pension scheme or in the future manpower planning of the 
society, thus such a scenario is never definitive and at any time it is possible to 
adapt it. 
But there still remains the basic problem of the statistical estimation of the two-
dimensional NHSM kernel given by (1.19). By (1.21), it suffices to estimate 
the ( , )ijb s tτ . To do so in a usual statistical way, we need not only a set of 
historical data big enough to accomodate classical statistical estimators but also 
relevant data concerning mortality experience tables, survivor distributions, etc. 
Furthermore, we also need data concerning salary lines, seniority, inflation rate 
and so on. 
Here too, let us mention that the model is very useful to project in the future 
some consequences related to changes in such data. 
For example, we can suppose that the seniority of a new member always begins 
at 0, as we did above; we can also suppose some relation between the salary line 
and the inflation rate. Indeed it is possible that the increasing of salaries will just 
compensate the inflation rate modification or will just give 1% more. 
To summarize, we may distinguish between three types of data sets: 
 
(i)   partial data given by a selected internal scenario, 
(ii)  historical data for estimation of the two-dimensional non-homogeneous 
semi-Markov kernel, 
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(iii) economic, financial and demographic data selected as an economic scenario 
predicting changes in a global economic environment. 
This ability of the model to consider such possibilities is very important as it will 
give by simulation, in a completely rigorous way, the fund evolution on the 
selected time horizon. 
 
Moreover, we can also proceed to quantitative comparisons for data as 
Khorasanee (1994) did. 
These potentialities of the GDTNHSM pension fund model show that it 
constitutes a realistic approach to pension funding (see Thornton and Wilson 
(1993)). 
Let us now give more details about the estimation of these data. 
 
1.8.1 Internal Scenario
 
The first thing is to refer to the rules of the pension scheme. Of course some rules 
must be in keeping with the law and some other rules are special for the society 
under scrutiny. 
At time 0, these are all known and this constitutes the given central internal 
scenario, but they may change in the sequel and some changes may be included 
and then constitute another internal scenario. 
As said above, this type of scenario can also include future manpower planning. 
This means that it depends on strategic decisions of the society for its future 
development and not only for survival of the pension fund. This strategy will 
give the future counting values for all active states. 
The total choice at time h constitutes the information hΨ  given in section 1.6. 
 
Remark 1.1 More theoretically the sequence ( ), 0h hΨ ≥  constitutes a filtration 
that must be added to a basic probability space ( ), ,Ω ℑ ℜ  but for simplicity we 
will not develop these more theoretical aspects here. 
 
1.8.2 Historical Data 
 
The general methodology for estimating the ( , )ijb s tτ  is to go from s to s+t  with 
successive unit steps so that we can find the estimation values in related 
statistical tables. 
For example, let us consider the element ( , )aib s tτ  where a is one of the 5m −  
active states and i the disability state. 
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Figure 1.8: times of statistical estimation 

 
By means of classical statistical methods,, functions ( , )ijF s tτ  and ( )ijp sτ can be 
estimated. Taking into account relation (1.27) it is then possible to estimate the 

( , )ijQ s tτ and at last we obtain: 
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 (1.101) 

Of course analog formulas may be easily found for the other possible transitions. 
Usually the necessary probabilities are available from actuarial tables. 
Special attention is necessary to mortality tables as it is now well known that, at 
the present time, for most Western countries the mean lifetime increases by three 
months every four years! It is clear that this fact already explains the great 
anxiety of pension fund managers concerning the financial equilibrium of their 
funds. 
Once more, this fact shows that the management of pension funds must be 
continuous to take into account new reliable information. 
 
1.8.3 Economic Scenario 
 
The simplest assumption, often made in the study of pension funds, is that the 
real interest rate is constant over all time horizon. However, we prefer to create 
scenarios both for the inflation rate and the market rate on the time horizon.  
This is really the most difficult problem, but we can always use Fisher's relation 
to find the real interest rate. 
It is also possible to find help in e.g. the Wilkie model (Wilkie (1994)) and in 
recent evolution in interest rate models in stochastic finance.  
Anyway we have to choose and this choice is a factor in our economic scenario. 
For the salaries we propose to adopt the following strategy: let us construct a 
three-way matrix where one index represents the hierarchical rank and the other 
two respectively time and seniority.  
We emphasize that the model includes the change in hierarchical ranks with the 
transitions between states 1 to m−5. So we only need to construct the salary line 
for each rank, which can be seen as a sheet of our three-way salary matrix. 
Clearly, salary lines for each rank at time 0 are known. This gives the following 
matrix: 
 [ ]( , )i im tτ=M    1,..., 5, 1,..., , 1,...,si m K t wτ= − = =  (1.102) 
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where ( , )im hτ  represents the salary rank in state i, (i=1,...,m−5) and seniority 
τ  at time h. This spreadsheet can be used as a Lexis diagram for each active 
member of the fund. 
Now we have to adapt an index evolution of the salary to go from row 0 to the 
following ones, and so to know the general elements of matrix iM . 
An important part of an economic scenario is to select indexes 0 1' , ' ,..., ' ,....hr r r  
representing the rates at which we decide the salary will increase. 
So we have the following relations: 
 ( , 1) (1 ' ) ( , )i h im h r m hτ τ+ = +  (1.103) 
solving the problem of salary line evolution. 
The same problem remains for the evolution of pension amount but fortunately in 
a simple way. 
 In fact we can suppose that all the pensions grow with only one index rate. This 
means that this evolution is independent of the obtained hierarchical rank of the 
member just before getting a pension, but it is time dependent. So we need just to 
select a vector 0 1" , " ,..., " ,....hr r r  as another part of our economic scenario. 
Let us finally remark that this last choice is also very important from the political 
point of view, particularly for relations between governments, trade unions and 
management representatives. 
 
Remark 1.2. 
(i) All the parameters we introduce in the economic scenario will in fact define 
solidarity inside the fund. 
Also, large simulations can give a financial measure of matching increases of 
lower pensions and decreases or stability of higher pensions. 
(ii) The evolution of disability and survivor pensions can be treated in the same 
way. 
 
1.9 Usefulness Of The NHSMPFM 
 
(i)   As we said in the introduction, to our knowledge, the GDTNHSM pension 
fund model presented here gives for the first time a general, rigorous and 
tractable framework for studying the time evolution of a fund, taking into 
account economic, financial and demographic possibilities of changes. 
(ii)  Its use as a simulation model will provide a very powerful internal tool, for 
society or for legal authorities, to measure the influences of these modifications. 
(iii) The presentation of our GDTNHSM model given here is microeconomic, i.e. 
related to one society, but its extension as a macroeconomic model to be used by 
regional or national authorities or also big insurance companies is 
straightforward. The only new problem is that of how to aggregate the data 
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necessary to start with the model and it may be judicious not to consider too 
many states. 
(iv) Let us also mention that, at least in our opinion, in the future more and more 
members of pension funds will take out private pensions contracted with 
insurance companies. The GDTNHSM model can be useful to fix the amount of 
premium to be paid for this supplementary pension in connection with the 
"usual" pension amount. 
(v)   From the computational point of view, it is clear that this model cannot be 
used as a simulation model without a good computer environment giving an easy 
way to measure the influence of the selected scenario. Interactive software is now 
being prepared by the authors in collaboration with some private pension funds. 
 
2. GENERALIZED NON-HOMOGENEOUS  
SEMI-MARKOV MODEL FOR MANPOWER 
 MANAGEMENT 
 
2.1 Introduction 
 
In the preceding section, we have seen that the evolution of salary lines is one of 
the most important aspects in the study of the dynamic evolution of pension 
funds, so we need to construct a model giving a good forecast of future salary 
lines. Of course, this model can also be used for other aims, in manpower 
management for example when a firm decides to change the rules of the rank 
promotions or its pyramidal job organisation. In this case, it is interesting to 
evaluate the cost differences between the new and the former rules in view of 
improving the manpower planning of the firm (Bartholomew (1982), 
Bartholomew, Forbes, McClean (1991), Vajda (1978).) 
In this section, we solve the problem by giving a generalisation of non-
homogeneous semi-Markov processes slightly different from the one used in the 
previous section. 
This problem was treated by Volpe (1997), Janssen and Manca (1997b) (2002) 
Janssen, Manca, Volpe (1997) Manca (2004a) (2004b), using different kinds of 
stochastic models. 
Let us remember that the evolution of salary lines has a strong influence on the 
behaviour of pension funds. 
Indeed, if the fund is with defined contribution (that means the pension is a 
function of the paid contributions) then it is important to know the expected 
evolution of the salary lines to know what the entrances into the fund will be for 
each member and in this way to compute the expected pensions for the working 
people in the fund. 
Furthermore if the fund is with defined benefit (performance) (that means the 
pension is a function of the last salaries), it is important to know the evolution of 
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salary from the point of view of fund entrances, but in this case the pension is 
directly a function of the last salaries paid to the members, so it is possible to 
understand the relevance of salary lines in this case. 
Here, we face the problem of making a generalisation of a model useful to 
forecast the development of pension funds (Janssen and Manca (1997a)), 
presented in the preceding section, which is an extension of the discrete time 
non-homogeneous semi-Markov processes (see for example Janssen and De 
Dominicis, (1984)) presented in Chapter 4. 
Markov processes and semi-Markov processes were already used in the man- 
power planning problems, see for example Bartholomew (1982). 
 
2.2 GDTNHSMP For The Evolution of Salary Lines 
 
A model for salary line evolution uses a state space with m−1 possible ranks in 
the active state and an absorbing state m representing the state of leaving the job 
for retirement, for death or for any other reason. 
As usual, let us denote this state space by I with 
 { }1,...,I m= . (2.1) 
Let us introduce now a discrete time scale: we observe the state at times 
0,1,2,...,k,....and so, clearly, at any time k, each member of the company is in one 
and only one of these m states. 
A quadruple of random variables ( ), , ,n n n nJ T H K is now introduced, where nJ  
represents the state of the member at transition n, nT  the time in which there is 
the transition n, nS  the seniority of the member at transition n and nK  the age of 
the member at transition n. 
 
Remark 2.1 Here seniority means the effective number of years that the member 
is in the company. 
 
The seniority 1nS +  and the age 1nK +  are usually defined by the relations: 
 1 1 ,n n n nS S T T+ += + −  (2.2) 
 1 1 .n n n nK K T T+ += + −  (2.3) 
Now, at each state transition, the considered member of the company is 
characterised by the quadruple 

 ( ), , ,n n n nJ T S K . (2.4) 
This (J,T,S,K) process may in fact also be considered as a three-dimensional non-
homogeneous Markov renewal process (J,(T-S),(T-K)) with kernel  

 1 1 1 1,
, , ,

( , ) .
, , ,

n n n n
ij

n n n n

J j T t S t s K t s
Q s t P

J i T s S K
μ τ

τ μ

τ μ
+ + + += ≤ ≤ + − ≤ + −⎛ ⎞

= ⎜ ⎟⎜ ⎟= = = =⎝ ⎠
 (2.5) 
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Now, we define the matrix B having as general element: 

 1 1 1 1,
, , ,

( , )
, , ,

n n n n
ij

n n n n

J j T t S t s K t s
b s t P

J i T s S K
μ τ

τ μ

τ μ
+ + + += = = + − = + −⎛ ⎞

= ⎜ ⎟⎜ ⎟= = = =⎝ ⎠
 (2.6) 

so that: 

 ,
, ,

0, ,
( , )

( , ) ( , 1) ,ij
ij ij

s t
b s t

Q s t Q s t s t
μ τ

μ τ μ τ

≥⎧⎪= ⎨ − − <⎪⎩
 (2.7) 

or equivalently: 

 , ,( , ) ( , ).
t

ij ij
h s

Q s t b s hμ τ μ τ

=

=∑  (2.8) 

Similarly, it is possible to write: 
 ( ),

1( ) , , , ,ij n n n n np s P J j J i T s S Kμ τ τ μ+= = = = = =  (2.9) 
representing the general element of the kernel of the process. 
We also have: 
 , ,( ) ( , ),ij ijp s Q sμ τ μ τ= ∞  (2.10) 

 , ,

1
( , ) ( , )

m

i ij
j

H s t Q s tμ τ μ τ

=

=∑ , (2.11) 

where: 
 ( ),

1( , ) , , , ,i n n n n nH s t P T t J i T s S Kμ τ τ μ+= ≤ = = = =  (2.12) 

 , ( , ) 1,iH sμ τ ∞ =  (2.13) 

 
,

,
,

( , )
( , ) ,

( )
ij

ij
ij

Q s t
F s t

p s

μ τ
μ τ

μ τ=  (2.14) 

where 
 ( ),

1 1( , ) , , , ,ij n n n n n nF s t P T t J i J j T s S Kμ τ τ μ+ += ≤ = = = = = , (2.15) 
i.e. the sojourn time conditional distribution entering  in state i at transition n 
with a seniority τ  at age μ . 
Finally, it is also possible to relate the associated semi-Markov process in 
keeping with the three-dimensional non-homogeneous Markov renewal process 
(J,(T-S),(T-K)) noted as 
 ( ), ; 0, 0, 0tZ tμ τ τ μ≥ ≥ ≥  (2.16) 

having as transition probabilities: 
 ( ), , ,( , ) .t s t s

ij t ss t P Z j Z iμ τ μ τ μ τφ + − + −= = =  (2.17) 

These transition probabilities satisfy the following system: 

 , , , ,

1
( , ) (1 ( , )) ( , ) ( , )

t m
s s

ij ij i ih hj
s h

s t H s t b s tμ τ μ τ μ τ μ θ τ θ

θ

φ δ θ φ θ+ − + −

= =

= − +∑∑ . (2.18) 
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It should be emphasized that the probabilities (2.9) are related to the generalized 
non-homogeneous Markov process embedded in the generalized non-
homogeneous semi-Markov process (2.16).  
Furthermore , ( , )ij s tμ τφ  represents the probability of staying in state j at time t 
once the process was in state i at time s with a seniority τ  at age μ .  
 
2.3 The GDTNHSMRWP For Reserve Structure 
 
To apply this model to the computation of present value of the current salary 
cost, it is necessary to consider a reward structure connected to the semi-Markov 
process. 
Clearly the salary value changes because of time and seniority but it does not 
change as a function of age, however the probability of being promoted and the 
transition to the absorbing state can be related to age.  
For this reason it is necessary to write the reward equation taking into account all 
these aspects. The equation will be slightly different from relation (1.39) because 
time is the main temporal variable. 
In this light, relation (1.39) becomes: 

 

( )

( )

, ,

1
,

1 0

, ,

1

( , ) (1 ( , )) ( ) 1

( , ) ( ) 1

( , ) ( , )(1 ) .

t
ss

i i i
s

t m

i i
s

t m
s s s

i
s

V s t H s t r

b s s r

b s V t r

θμ τ μ τ τ θ

θ

θ
ϑμ τ τ ϑ

β
θ β ϑ

μ τ μ θ τ θ θ
β β

θ β

ψ θ

θ ψ ϑ

θ θ

−+ −

=

−
−+

= = =

+ − + − −

= =

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠

+ + +

+ +

∑

∑∑ ∑

∑∑

 (2.19) 

In the case of the salary cost evaluation model, the financial meaning of the 
equations (2.19) can be given. 
The , ( , )iV s tμ τ  are the discounted expected values of the salaries that were paid 
from s to t when an employee was in rank i at time s with a seniority τ  and an 
age μ . These formulas are compounded from the following parts: 

 ( ),(1 ( , )) ( ) 1
t

ss
i i

s
H s t r θμ τ τ θ

θ

ψ θ −+ −

=

⎛ ⎞
− +⎜ ⎟

⎝ ⎠
∑ , (2.20) 

 ( )
1

,

1 0
( , ) ( ) 1

t m

i i
s

b s s r
θ

ϑμ τ τ ϑ
β

θ β ϑ

θ ψ ϑ
−

−+

= = =

+ +∑∑ ∑ , (2.21) 

 , ,

1

( , ) ( , )(1 ) .
t m

s s s
i

s

b s V t rμ τ μ θ τ θ θ
β β

θ β

θ θ+ − + − −

= =

+∑∑  (2.22) 

In relation (2.20), the term ,(1 ( , ))iH s tμ τ−  represents the probability of 
remaining in state i once a member has arrived at time s with a seniority τ  and 
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an age μ . So this member for each time period gets the salary ( )s
i

τ θ ψ θ+ − , 
depending on the time and seniority and so (2.20) represents the expected related 
value. 
Relation (2.21) gives the expected present value of the salaries that a member 
arrived at i at time s with seniority τ  and age μ  got in this state before it 
changed. 
Finally, the expression (2.22) represents the expected value of the salaries that a 
member, having arrived in state i at time s with a seniority τ  and an age μ and 
having changed his situation at time θ , has to get in the new state.  
These values are paid at time s−θ , so it is necessary to discount them. 
In this way, the probabilities of changing states differ because of seniority, but it 
is also possible to consider different rewards as a function of different seniorities. 
 
2.4 Reserve Structure With Stochastic Interest Rate 
 
A stochastic interest rate structure is introduced in this part. 
The structure will be constructed by means of DTNHSMP as in Chapter 6.  
In this case the state of the process will be: 
 { }1 2, , , kE r r r= …  (2.23) 
where the ir  represents all the possible implied stochastic interest rates and k 
gives the number of the implied interest rates. 
Now ),( tsijφ  represents the probability that at time t the implied interest rate 

will be jr , given that the implied interest rate was ir  at time s and ( , )i s hν  
represents the mean discounting factor for a time (h− s) given that at time s the 
interest rate was ir . 
Now, the evolution equation (2.19) becomes: 

 

, ,

1
,

1 0

, ,

1

( , ) (1 ( , )) ( ) ( , )

( , ) ( ) ( , )

( , ) ( , ) ( , ),

t
s

i i i
s

t m

i i
s

t m
s s

i
s

V s t H s t s

b s s s s

b s V t s

μ τ ε μ τ τ θ
ε

θ

θ
μ τ τ ϑ

β ε
θ β ϑ

μ τ μ θ τ θ ε
β β ε

θ β

ψ θ ν θ

θ ψ ϑ ν ϑ

θ θ ν θ

+ −

=

−
+

= = =

+ − + −

= =

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠

+ + +

+

∑

∑∑ ∑

∑∑

 (2.24) 

assuming that rε  will be the known interest rate at time s. 
From (7.8) of Chapter 10 it results that: 

 , ,

1
( , ) ( , ) ( , )

n
j

j
j

V t s V tμ τ ε μ τ
β ε βθ φ θ θ

=

= ∑  (2.25) 

so that we obtain the following results: 
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 , ,

1
( , ) ( , ) (0, )

k

i iV s t V s t sμ ν μ ν η
ηε

η

φ
=

=∑  (2.26) 

where rη is the known rate of interest at time 0. 
The solution of the GDTNHSMP and the GDTNHSMRWP can be obtained by a 
backward substitution process similar to the one described in section 1 for the 
pension model. 
 
2.5 The Dynamics Of Population Evolution 
 
Also the population evolution can be studied by means of the same relations 
given in section 1.6.  
By means of relations given in that part, it is possible to evaluate the number of 
people in the ranks of a given company and furthermore taking into account the 
possibility of new additions to the workforce.  
We report only the definitions because of the different uses of temporal variables 
as the related formulas can be obtained in the same way as given in the previous 
part. 
 

, ( )iN sμ τ : the number of members present in the company in  rank i at time s with 
seniority τ and age μ , 

, ( )N sμ τ : the number of members present in the company at time s with seniority 
τ and age μ , 

( )iN sτ : the number of members present in the company in rank i at time s with 
seniority τ , 

( )N sτ : the number of members present in the company at time s with seniority 
τ , 

( )iN s : the number of members present in the company in rank i at time s, 
( )N s : the total number of members present in the company at time s. 

 
Here too, we can introduce a scenario concerning the number of active people 
the firm wants to have at any time in each rank; the values at time 0 being 
known: 
 ( ), 0,1, ,iN s s T= … ;  1,2, , 1i m= −… , (2.27) 
where, as usual, T is the fixed time horizon. 
All the relations given previously hold and will not be repeated. 
Taking into account the different meanings of the temporal variable and the 
given scenario, we can evaluate the , ( )iN sμ τ values by means of the relations 
given in section 1.6. These values represent the mean number of people present 
at time s with seniority τ  and age μ  in state i.  
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Then we get the mean charge of future work at any time t that can be predicted at 
present time s (s<t): 

 
1

, , ,

1
( , ) ( , ) ( ).

m

i ij i
j

N s t s t N sμ τ μ τ μ τφ
−

=

=∑  (2.28) 

The seniority and the age are also known and it is clear that all these results are 
fundamental for the future labour policy of the firm. 
 
2.6 The Computation Of Salary Cost Present Value
 
Once the systems (2.18) and (2.19) are solved, given a person that is at time s 
with seniority τ  and age μ  in state i, the probabilities: 

, , , ,( , 1), ( , 2), ( , 3), , ( , ); 1, , 1ij ij ij ijs s s s s s s w j mμ τ μ τ μ τ μ τφ φ φ φ+ + + = −…  (2.29) 
are known. 
They represent the probabilities of being in rank j after one year, two years and 
so on; these probabilities will be equal to 0 if they represent some impossible 
cases. 
By means of results (2.28) and (2.29), we can obtain all the , ( , )iN s tμ τ  that are 
necessary. 
Furthermore for each year it is possible to compute the salary line, if the salary 
that will be paid to a person with a given seniority in a given rank for each year 
is known, which in general is the case. 
If we suppose that the rates of salary evolution are known for the given company 
(we suppose we are in a given economic scenario), then it is possible to 
construct, for each rank, a matrix the elements of which will give the expected 
salary in the firm for each seniority and each year in our time horizon. 
In this way we will obtain a three-dimensional matrix with as elements: 
 ( ); 1, , 1, 0, , , 0, ,j ss j m K s wτψ τ= − = =… … …  (2.30) 
representing the salary in state j, of a person with seniority τ  at time s in the 
given scenario. 
The mean salary line of a given situation in the time horizon, as specified in 
Janssen Manca Volpe (1997), will be given by: 

 

1
,

1,
1

,

1

( , ) ( );
( , ) ; 1, , .

( , ) ( );s

m
t s

ij j s
j

i m
K

ij j s
j

s t t t s K
A s t t s w

s t t t s K

μ τ τ

μ τ

μ τ

φ ψ τ

φ ψ τ

−
+ −

=

−

=

⎧
+ − ≤⎪

⎪= = +⎨
⎪ + − >
⎪⎩

∑

∑
…  (2.31) 

To apply the model it is necessary to know all the ,
, ( , )i jb s tμ τ . To obtain these 

probabilities it is necessary to know all the functions ,
, ( , )i jQ s tμ τ , obtained, taking 

into account relation (2.12), knowing ,
, ( , )i jF s tμ τ  and ,

, ( )i jp sμ τ . 
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Though not easy to be found, these data may be obtained by observation and 
there are some models that can be used (see for example De Dominicis and 
Manca (1984a)). 
Once the data are known, it is possible to solve (2.18) and (2.19) and to obtain 
the results. 
Finally we get the following formula: 

 

, ,

0 1

,0 ,0

1 1

(0, ) (0, )

( , ) ( , )(1 )

s mwa

mwa

K K m

i i
i

K w m
s

i i
s i

A V w N w

V s w N s w r

μ τ μ τ

τ μ α

μ μ

μ α

= = =

−

= = =

=

+ +

∑∑∑

∑∑∑
 (2.32) 

giving the present value of salary cost, where the first part represents the cost for 
the people that are in the company at time 0 and the second part the salary cost of 
the people that will enter into the company.  
As already specified, the number of the new employees is a function of the 
scenario in which the model develops. 
Finally, let us remark that the salary line forecasting problem can be solved also 
by means of other models based on the generalizations of the Bernoulli stochastic 
process (Manca (2004a)).  
However in this case the probabilities , ( , 1)ij s sμ τφ +  become inputs for the 
generalized binomial process. 
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